1. Given numerical objects named x and y , calculate this quantity (which is of no special interest): $\sqrt{x^{2} / y}$
```
sqrt(x^2/y)
```

2. Load the mosaic package, read in a data set named CPS85, and assign it to an object called people.
```
require(mosaic)
data(CPS85)
people <- CPS85
```

3. Display the first few rows of the people data frame.
```
head(people)
```

4. Display a quick glance at the data frame.
```
glimpse(people)
```

5. Calculate (not count by hand!) the number of cases in the data frame.
```
nrow(people)
```

6. Calculate the mean wage of all people.
```
mean(~wage, data = people)
```

7. Calculate the standard deviation of wage for all people.
```
sd(~wage, data = people)
```

8. Compute the five number summary of all wages with a single command.
```
favstats(~wage, data = people)
```

9. Calculate the mean wage separately for married and unmarried people.
```
mean(wage ~ married, data = people)
```

10. Create a new variable, fraction, in the data frame that holds the ratio of the person's "experience" to their age.
```
people <- mutate(people, fraction = exper/age)
## Warning: package 'bindrcpp' was built under R version 3.3.2
```

11. Make a box plot of the people's wage, broken down by marital status.
```
qplot(x = married, y = wage, data = people, geom = "boxplot")
```


12. Make a scatterplot of people's wages as a function of age, separated by marital status:

```
qplot(x = age, y = wage, color = married, data = people)
```


13. Calculate (not count by hand!) the number of people by marital status.

```
tally(*married, data = people)
```

14. Calculate (not count by hand!) the number of people by marital status and sex simultaneously.
```
tally(married ~ sex, data = people)
```

