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Agenda

1. Goodness of fit

Goodness of Fit Previously, we considered inference for a single proportion. That proportion
was the fraction of the outcomes of a binary response variable that had a certain value. For example,
respondents could either say that they preferred Coke, or that they preferred Pepsi. But what if the
variable can have more than two outcomes? Can we still test the hypothesis that the sample was
drawn from a known population?

The US Census Bureau reports that in 2000, among the population 15 years and older:

• 54.3% are married

• 27.1% have never been married

• 9.7% are divorced

• 6.6% are widowed

• 2.2% are separated

We can encode these percentages as a vector in R:

us <- c("Divorced" = 0.097, "Married" = 0.543, "Never married/single" = 0.271, "Separated" = 0.022, "Widowed" = 0.066)

# normalize to make sure proportions sum to 1

us <- us / sum(us)

us

## Divorced Married Never married/single

## 0.09709710 0.54354354 0.27127127

## Separated Widowed

## 0.02202202 0.06606607

The openintro package contains a sample of 500 Americans collected in the 2000 Census. In
this sample, the percentages are different:

library(openintro)

library(mosaic)

marital_summary <- census %>%

mutate(maritalStatus =

forcats::fct_recode(maritalStatus, Married = "Married/spouse absent",

Married = "Married/spouse present")) %>%

group_by(maritalStatus) %>%

summarize(status_obs = n()) %>%

mutate(marital_status_pct = status_obs / nrow(census), marital_status_us = us)

marital_summary$marital_status_pct

## [1] 0.076 0.412 0.444 0.006 0.062

Is it reasonable to conclude that the sample from 2000 reflects the overall US population?
In the previous case, the test statistic was the observed sample proportion p̂. In this case, we

have more than two outcomes, so there is nothing quite analogous to p̂. The test statistic that we
will use will be labelled X2, and its formula is:

X2 =

k∑
i=1

Z2
i =

k∑
i=1

(
observedi − expectedi√

expectedi

)2

=

k∑
i=1

(observedi − expectedi)2

expectedi
,

where k is the number of different outcomes (which in this case is 5). As always, our goal is to put
X2 in context by determining where it lies in the null distribution. First, let’s compute the test
statistic:

https://www.census.gov/prod/2003pubs/c2kbr-30.pdf
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n <- nrow(census)

k <- nrow(marital_summary)

marital_summary <- marital_summary %>%

mutate(status_exp = marital_status_us * n)

X2_hat <- marital_summary %>%

summarize(X2 = sum(((status_obs - status_exp)^2) / status_exp)) %>% unlist()

1. Write out the full calculation for X2 using a table

We want to test the null hypothesis that our sample came from the population, whose marital
status breakdown is known. Since this implies that the observed counts will match the expected
counts exactly, this would result in a test statistic of X̂2 = 0. Our observed value of X̂2 is very
different from 0, but in order to understand how different, we need to know what the null distribution
of X̂2 is. In this case, it is not normal!

Just as before, there are at least three different ways to construct the sampling distribution of
X̂2:

1. Simulation: The procedure is the same it has been: sample from the hypothesized distribution
and compute the test statistic many thousands of times.

sim <- do(1000) *

marital_summary %>%

sample_n(size = n, replace = TRUE, weight = marital_status_us) %>%

group_by(maritalStatus) %>%

summarize(status_obs = n(), status_exp = first(status_exp)) %>%

mutate(X2_i = (status_obs - status_exp)^2 / status_exp) %>%

summarize(X2 = sum(X2_i))

qplot(data = sim, x = X2)

The p-value can be obtained using the pdata function, since the sampling distribution comes
from simulated data in our workspace. Note also that since the distribution is non-negative,
our test is one-sided.

pdata(~X2, X2_hat, data = sim, lower.tail = FALSE)

## X2

## 0

2. Probability Theory: Last time, we worked with a binary variable, and that led to a binomial
distribution. This time, we have a categorical variable that can take on more than two values,
and that leads to a multinomial distribution. For the purposes of this class, you do not need
to know what a multinomial distribution is, but it is the multivariate extension of the binomial
distribution (i.e. the binomial distribution is the special case of the multinomial distribution
when the number of outcomes is 2).
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We will not discuss this approach any further, but based on what you saw last time, hopefully
you can believe us that: a) it exists; b) it requires some non-trivial probability theory; and c)
it is computationally burdensome.

3. Chi-Squared Test: Since the multinomial distribution is very cumbersome to work with, statis-
ticians have constructed a parametric approximation to the sampling distribution of X̂2. It
follows from probability theory that as long as the expected count of each outcome is at least
5, the test statistic follows a distribution that is closely approximated by a χ2-distribution on
k − 1 degrees of freedom.

plotDist("chisq", params = list(df = k-1), lwd = 3)

The p-value can be obtained using the pchisq function, since the sampling distribution follows
a χ2-distribution.

pchisq(X2_hat, df = k-1, lower.tail = FALSE)

## X2

## 2.63096e-16

Notice that the p-value is a one-tailed area in this case, since the distribution is non-negative.

There is also a built-in function in R that will perform a χ2-test.

with(marital_summary, chisq.test(status_obs, p = marital_status_us))

##

## Chi-squared test for given probabilities

##

## data: status_obs

## X-squared = 79.154, df = 4, p-value = 2.631e-16

What Can Go Wrong? Once again, the condition that the expected count for each category
is at least 5 is important, because if that condition is not met, the χ2-distribution may not be a
sufficiently good approximation. Note that the deviation in each count is approximately normal, so
the approximation can fail for any of the outcomes.

n <- 35

sim <- do(1000) *

marital_summary %>%

mutate(status_exp = marital_status_us * n) %>%

sample_n(size = n, replace = TRUE, weight = marital_status_us) %>%

group_by(maritalStatus) %>%

summarize(status_obs = n(), status_exp = first(status_exp)) %>%

mutate(X2_i = (status_obs - status_exp)^2 / status_exp) %>%

summarize(X2 = sum(X2_i))

qplot(data = sim, x = X2, geom = "density") +

stat_function(fun = dchisq, args = list(df = k-1), color = "purple")
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In-Class Exercise, OI, 3.40 Evolution vs. creationism A Gallup Poll released in December
2010 asked 1019 adults living in the Continental U.S. about their belief in the origin of humans.
These results, along with results from a more comprehensive poll from 2001 (that we will assume to
be exactly accurate), are summarized in the table below:

Year
Response 2010 2001
Humans evolved, with God guiding (1) 38% 37%
Humans evolved, but God had no part in process (2) 16% 12%
God created humans in present form (3) 40% 45%
Other / No opinion (4) 6% 6%

1. Calculate the actual number of respondents in 2010 that fall in each response category.

2. State hypotheses for the following research question: have beliefs on the origin of human life
changed since 2001?

3. Calculate the expected number of respondents in each category under the condition that the
null hypothesis is true.
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4. Conduct a chi-square test and state your conclusion. (Reminder: verify conditions.)


