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Agenda

1. Inference for multiple regression

2. More regression diagnostics

3. Bootstrap for regression

Case Study: Gestation redux The Child Health and Development Studies investigate a range
of topics. One study, in particular, considered all pregnancies between 1960 and 1967 among women
in the Kaiser Foundation Health Plan in the San Francisco East Bay area. The goal is to model
the weight of the infants (bwt, in ounces) using variables including length of pregnancy in days
(gestation), mother’s age in years (age), mother’s height in inches (height), whether the child was
the first born (parity), mother’s pregnancy weight in pounds (weight), and whether the mother was
a smoker (smoke). The summary table below shows the results of a regression model for predicting
the average birth weight of babies based on all of the variables included in the data set.

library(mosaic)

mod <- lm(wt ~ gestation + age + ht + wt.1 + parity + smoke, data = Gestation)

msummary(mod)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -88.70273 14.85467 -5.971 3.12e-09 ***

## gestation 0.46317 0.03013 15.371 < 2e-16 ***

## age 0.02450 0.09681 0.253 0.8002

## ht 1.09399 0.21266 5.144 3.15e-07 ***

## wt.1 0.06067 0.02628 2.309 0.0211 *

## parity 0.56354 0.30092 1.873 0.0614 .

## smoke -0.88334 0.52846 -1.672 0.0949 .

##

## Residual standard error: 16.35 on 1167 degrees of freedom

## (62 observations deleted due to missingness)

## Multiple R-squared: 0.2087,Adjusted R-squared: 0.2046

## F-statistic: 51.29 on 6 and 1167 DF, p-value: < 2.2e-16

confint(mod)

## 2.5 % 97.5 %

## (Intercept) -1.178476e+02 -59.5578925

## gestation 4.040487e-01 0.5222936

## age -1.654278e-01 0.2144369

## ht 6.767417e-01 1.5112356

## wt.1 9.108466e-03 0.1122317

## parity -2.687411e-02 1.1539491

## smoke -1.920186e+00 0.1535040

1. Write the equation of the regression line that includes all of the variables.

2. Interpret the slopes of gestation and age in this context.

3. Identify the null and alternative hypotheses for the 6 tests displayed above.
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4. Interpret the 95% confidence interval for the smoke coefficient

5. The coefficient for parity is different than if you fit a linear model predict weight using only
that variable. Why might there be a difference?

coef(lm(wt ~ parity, data = Gestation))

## (Intercept) parity

## 119.0369557 0.2794484

6. Calculate the residual for the first observation in the data set.

head(Gestation, 1)

## id pluralty outcome date gestation sex wt parity race age ed ht wt.1

## 1 15 5 1 1411 284 1 120 1 8 27 5 62 100

## drace dage ded dht dwt marital inc smoke time number

## 1 8 31 5 65 110 1 1 0 0 0

# head(fitted(mod), 1)

# head(residuals(mod), 1)

7. The variance of the residuals is 249.28, and the variance of the birth weights of all babies in the
data used to build the model is 335.94. Calculate the R2 and the adjusted R2. Note that there
are 1236 observations in the data set, but there was missing data in 62 of those observations,
so only 1174 observations were used to build the regression model.

var(~residuals(mod))

## [1] 265.8434

var(~wt, data = mod$model)

## [1] 335.9402

# rsquared(mod)
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8. This data set contains missing values. What happens to these rows?

9. Interpret the R2 (coefficient of determination) for this model

Regression Diagnostics

• Linearity– scatterplot (only in s.l.r.), residual vs. fitted plot

• Independence– the thinking condition

• Normality (of residuals)– QQ plot or histogram of residuals

• Equal Variance (of residuals)– residual vs. fitted plot

• Investigate outliers and influentional points

• Investigate possible multicollinearity

Residual analysis You can roll your own:

babies_mod = broom::augment(mod)

qplot(y = .resid, x = .fitted, data = babies_mod) + geom_smooth()

qplot(y = .resid, x = gestation, data = babies_mod) + geom_smooth()

qplot(y = .resid, x = age, data = babies_mod) + geom_smooth()

qplot(y = .resid, x = ht, data = babies_mod) + geom_smooth()

qplot(y = .resid, x = wt.1, data = babies_mod) + geom_smooth()

qplot(sample = .resid, data = babies_mod, geom = "qq")

qplot(x = .resid, data = babies_mod, geom = "blank") +

geom_histogram(aes(y = ..density..), binwidth = 4) +

stat_function(fun = dnorm, args = c(mean = 0, sd = sd(babies_mod$.resid)), col = "tomato")

Or use the built-in diagnostics:

plot(mod, which=c(1,2))
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What do you think about the conditions for this model? Are they upheld?

Interesting observations Are there interesting individual observations?

glimpse(slice(Gestation, c(261, 235)))

## Observations: 2

## Variables: 23

## $ id <int> 4604, 3863

## $ pluralty <int> 5, 5

## $ outcome <int> 1, 1

## $ date <int> 1598, 1610

## $ gestation <int> 148, 318

## $ sex <int> 1, 1

## $ wt <int> 116, 93

## $ parity <int> 7, 7

## $ race <int> 7, 7

## $ age <int> 28, 31

## $ ed <int> 1, 0

## $ ht <int> 66, 66

## $ wt.1 <int> 135, 135

## $ drace <fctr> 7, 7

## $ dage <int> 36, 30

## $ ded <int> 1, 4

## $ dht <int> 68, NA

## $ dwt <int> 155, NA

## $ marital <int> 0, 1

## $ inc <int> 2, NA

## $ smoke <int> 0, 0

## $ time <int> 0, 0

## $ number <int> 0, 0

Multicolinearity Are there strong pairwise correlations between any of the explanatory variables?

library(GGally)

nbabies <- Gestation %>%

select(gestation, age, ht, wt.1)

ggpairs(nbabies)
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Bootstrap for Regression Recall that a slope coefficient is an average or expected change in the
response variable as a function of a unit change in that explanatory variable, holding the other ex-
planatory variables constant. Like the sample mean, the estimated coefficient (β̂1) is a deterministic
calculation based on a single sample of data, but it too has a sampling distribution. Thus, we can
use the bootstrap percentile method to construct a confidence interval for it. The default confidence
interval is constructed using the t-distribution.

require(mosaicData)

mod <- lm(wt ~ age, data=Gestation)

coef(mod)

## (Intercept) age

## 116.6834606 0.1062233

confint(mod)

## 2.5 % 97.5 %

## (Intercept) 111.77014517 121.596776

## age -0.07012632 0.282573

The bootstrap percentile method should give us a similar interval:

bstrap <- do(1000) * coef(lm(wt ~ age, data = resample(Gestation)))

qdata(~age, p = c(0.025, 0.975), data = bstrap)

## quantile p

## 2.5% -0.07015013 0.025

## 97.5% 0.29114906 0.975


