
More on Data Types and Syntax —
transitioning to programming in R

These materials adapted by Amelia McNamara from the RStudio CC BY-SA materials Introduction to R (2014)
and Master the Tidyverse (2017).

https://creativecommons.org/licenses/by-sa/2.0/
https://github.com/rstudio-education/master-the-tidyverse

Data Types in R

1. Vectors

2. Matrices

3. Data types

4. Coercion

From R for Data Science by Hadley Wickham and Garrett Grolemund.

Program

base
R

Your Turn 1

Look at the R object
WorldPhones (by typing its name
in your notebook or the Console
and hitting enter).

What is inside of WorldPhones?

 N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer
1951 45939 21574 2876 1815 1646 89 555
1956 60423 29990 4708 2568 2366 1411 733
1957 64721 32510 5230 2695 2526 1546 773
1958 68484 35218 6662 2845 2691 1663 836
1959 71799 37598 6856 3000 2868 1769 911
1960 76036 40341 8220 3145 3054 1905 1008
1961 79831 43173 9053 3338 3224 2005 1076

WorldPhones

You can save more than a single number in an
object by creating a vector, matrix, or array.

Vectors

Your turn

How many dimensions does a
vector have?

1 2 3 4 5 6

How many dimensions does a
vector have?

1 2 3 4 5 6

vec <- c(1, 2, 3, 10, 100)
vec

vectors
Combine multiple elements into a one
dimensional array.

Create with the c function (for "concatenate").

Your turn

vec <- c(1, 2, 3, 10, 100)
vec

What happens in your Environment
when you run this code?

In your Notebook?

vec <- c(1, 2, 3, 10, 100)
vec
1 2 3 10 100

vectors
Combine multiple elements into a one
dimensional array.

Create with the c function (for "concatenate").

Matrices
Unc

om
mon

, b
ut

 go
od

 to
 kn

ow

Your turn

How many dimensions does a
matrix have?

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9

How many dimensions does a
matrix have?

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9

Your turn

The matrix below is named M.
What is the value of M34?

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

The matrix below is named M.
What is the value of M34?

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

The matrix below is named M.
What is the value of M34?

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

The matrix below is named M.
What is the value of M34?

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

mat <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
mat
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

matrices
multiple elements stored in a two
dimensional array.

Create with the matrix function.

mat <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
mat
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

matrices
Combine multiple elements into a two
dimensional array.

Create with the matrix function.

matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

vector of elements to
go in the matrix

matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

number of rows for
matrix

matrix(c(1, 2, 3, 4, 5, 6), nrow = 3)
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

R as a
calculator

(again)

vec + 4
5 6 7 14 104

vec * 4
4 8 12 40 400

vec * vec
1 4 9 100 10000

Math: element-wise

Green text indicates a code
"comment," another way to
document what you're doing.
Comments aren't executed by R
when you run a line.

vec * vec
1 4 9 100 10000

vec
1
2
3
10
100

vec
1
2
3
10
100

1
4
9
100
10000

*
*
*
*
*

=
=
=
=
=

vec %*% vec # inner
[,1]
[1,] 10114

vec %o% vec # outer
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 10 100
[2,] 2 4 6 20 200
[3,] 3 6 9 30 300
[4,] 10 20 30 100 1000
[5,] 100 200 300 1000 10000

Matrix multiplication

mat
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

t(mat)
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

array(c(1, 2, 3, 4, 5, 6), dim = c(2, 2, 3))

arrays
Combine multiple elements into an array
that has three or more dimensions.

Create with the array function.

array(c(1, 2, 3, 4, 5, 6), dim = c(2, 2, 3))

arrays
Combine multiple elements into an array
that has three or more dimensions.

Create with the array function.

Ano
the

r u
nc

om
mon

str
uc

tur
e

Data types

Warm up

Wha
t ty

pes
 of

 data
 ap

pea
r

in
thi

s s
prea

dsh
ee

t?

data types
Like Excel, Numbers, etc., R can recognize
different types of data.

We'll look at four basic types:

• numbers

• character strings (text)

• logical

• factor

numeric
Any number, no quotes.

Appropriate for math.

1 + 1

3000000

class(0.00001)
"numeric"

character
Any symbols surrounded by quotes.

Appropriate for words, variable names,
messages, any text.

"hello"

class("hello")
"character"

"hello" + "world"
Error

nchar("hello")
5

paste("hello", "world")
"hello world"

Your turn

Which of these are numbers? What
are the others? How can you tell?

1 "1" "one"

logical
TRUE or FALSE

R's form of binary data. Useful for logical tests.

3 < 4
TRUE

class(TRUE)
"logical"

class(T)
"logical"

factor
R's form of categorical data. Saved as an
integer with a set of labels (e.g. levels).

fac <- factor(c("a", "b", "c"))
fac
a b c
Levels: a b c

class(fac)
factor

Use
 gr

ea
t c

au
tio

n w
ith

fac
tor

s

Quiz

x <- c(1, 2, 3)

What is the difference between these?

 x

"x"

Type Examples

numeric 0, 1, -2, 3.1415, 0.0005

character "Amelia", "Agree", "31"

logical TRUE, FALSE

factor
a c c b

Levels: a b c

Your turn 2

Make a vector that contains the number
1, the letter R, and the logical TRUE.

What class of data is the vector?

vec <- c(1, "R", TRUE)
class(vec)
"character"

vec
"1" "R" "TRUE"

What is R doing?

Your turn
Another way to see the class of an
object is in the Environment pane.
Does the Environment agree with
what you found using class()?

Vector

Vector 1 2 3

Vector 1 2 3

numeric

Vector "a" "R" "b"

character

Vector TRUE TRUE TRUE

logical

Vector 1 "R" TRUE

?

Vector "1" "R" "TRUE"

character

Coercion

coercion

logical

numeric

character

coercion

logical

numeric

character

TRUE
FALSE

1
0

I'm going to give you a "quiz", and you might want to create your own chunk to
try out some code. Use the Insert button to insert one

Quiz
What type of data will
result?

c(5, "two")

c(TRUE, "a")

c(1, "TRUE")

TRUE + 5

Quiz
What type of data will
result?

c(5, "two")

c(TRUE, "a")

c(1, "TRUE")

TRUE + 5

character

Quiz
What type of data will
result?

c(5, "two")

c(TRUE, "a")

c(1, "TRUE")

TRUE + 5

character

character

Quiz
What type of data will
result?

c(5, "two")

c(TRUE, "a")

c(1, "TRUE")

TRUE + 5

character

character

character

Quiz
What type of data will
result?

c(5, "two")

c(TRUE, "a")

c(1, "TRUE")

TRUE + 5

character

character

character

Quiz
What type of data will
result?

c(5, "two")

c(TRUE, "a")

c(1, "TRUE")

TRUE + 5

character

character

numeric

character

function coerces data to

as.numeric numeric

as.character character

as.logical logical

as.factor factor

manual coercion

as.numeric("1")
as.character(TRUE)

Matrix 1 "R" TRUE

?

2

3

"S"

"T"

FALSE

TRUE

Matrix "1" "R" "TRUE"

character

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

Matrix

character
What if you want different data

types in the same object?

"1" "R" "TRUE"

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

Lists and
data frames

lists and data frames
lists and data frames generalize vectors and
matrices to allow multiple types of data

Lists

lists
A list is a one dimensional group of R
objects.

Create lists with list

lst <- list(1, "R", TRUE)
class(lst)
"list"

Vector

List

"1" "R" "TRUE"

character

Vector

List

character

1

"1" "R" "TRUE"

Vector

List

character

numeric

1

"1" "R" "TRUE"

Vector

List

character

numeric

1 "R"

"1" "R" "TRUE"

Vector

List

character

characternumeric

1 "R"

"1" "R" "TRUE"

Vector

List

character

characternumeric

1 "R" TRUE

"1" "R" "TRUE"

Vector

List

character

characternumeric logical

1 "R" TRUE

"1" "R" "TRUE"

List c(1, 2) c("a", "b", "c")TRUE

list(c(1, 2), TRUE, c("a", "b", "c"))

The elements of a list can be anything. Even
vectors or other lists.

List viewer in RStudio

Data frames

data frame
A data frame is a two dimensional group of R
objects.

Each column in a data frame can be a different type

df <- data.frame(c(1, 2, 3),
 c("R","S","T"), c(TRUE, FALSE, TRUE))
class(df)
"data.frame"

Your turn

We've already seen a data frame
today. What was it called? What
kinds of data were in it?

Matrix

character

"1" "R" "TRUE"

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

data frame 1

2

3

Matrix

character

numeric

data frame 1

2

3

"1" "R" "TRUE"

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

Matrix

character

numeric

data frame 1 "R"

2

3

"S"

"T"

"1" "R" "TRUE"

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

Matrix

character

numeric character

data frame 1 "R"

2

3

"S"

"T"

"1" "R" "TRUE"

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

Matrix

character

numeric character

data frame 1 "R"

2

3

"S"

"T"

"1" "R" "TRUE"

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

TRUE

FALSE

TRUE

Matrix

character

numeric character logical

data frame 1 "R"

2

3

"S"

"T"

TRUE

FALSE

TRUE

"1" "R" "TRUE"

"2"

"3"

"S"

"T"

"FALSE"

"TRUE"

names
You can name the elements of a vector, list, or
data frame when you create them.

nvec <- c(one = 1, two = 2, three = 3)

nvec
one two three
1 2 3

nlst <- list(one = 1, two = 2,
 many = c(3, 4, 5))

nlst
$one
[1] 1

$two
[1] 2
#
$many
[1] 3 4 5

ndf <- data.frame(numbers = c(1, 2, 3),
 letters = c("R","S","T"),
 logic = c(TRUE, FALSE, TRUE))

ndf
numbers letters logic
1 1 R TRUE
2 2 S FALSE
3 3 T TRUE

Your turn

Use the RStudio data preview to
compare df and ndf

You can also see the names with names

names(ndf)
[1] "numbers" "letters" "logic"

names(nvec)
[1] "one" "two" "three"

Matrix

Array

Vector List

Data frame

1D
2D

nD

single type multiple types

List c("a","b","c","d") c(1, 2, 3, 4) c(T, F, T, F)

How R makes a data frame

List
c(

"a","
b","c
","d")

c(
1,
2,
3,
4)

c(
T,
F,
T,
F)

c(
"a","
b","c
","d")

c(
1,
2,
3,
4)

c(
T,
F,
T,
F)

List

c(
"a","
b","c
","d")

c(
1,
2,
3,
4)

c(
T,
F,
T,
F)

List

data frame

create change to check get names get
dimensions

vector c, vector as.vector is.vector names length

matrix matrix as.matrix is.matrix rownames,
colnames

dim,
nrow,
ncol

array array as.array is.array dimnames dim

list list as.list is.list names length

data
frame data.frame as.data.frame is.data.frame names

dim,
nrow,
ncol

helper functions for data structures

Syntax

Syntax is the set of rules that govern
what code works and doesn’t work in a
programming language. Most programming
languages offer one standardized syntax,
but R allows package developers to specify
their own syntax. As a result, there is a large
variety of (equally valid) R syntaxes.

SUMMARY STATISTICS:
one continuous variable:
mosaic::mean(~mpg, data=mtcars)

one categorical variable:
mosaic::tally(~cyl, data=mtcars)

two categorical variables:
mosaic::tally(cyl~am, data=mtcars)

one continuous, one categorical:
mosaic::mean(mpg~cyl, data=mtcars)

SUMMARY STATISTICS:

one continuous variable:
mean(mtcars$mpg)

one categorical variable:
table(mtcars$cyl)

two categorical variables:
table(mtcars$cyl, mtcars$am)

one continuous, one categorical:
mean(mtcars$mpg[mtcars$cyl==4])
mean(mtcars$mpg[mtcars$cyl==6])
mean(mtcars$mpg[mtcars$cyl==8])

PLOTTING:
one continuous variable:

hist(mtcars$disp)

boxplot(mtcars$disp)

one categorical variable:
barplot(table(mtcars$cyl))

two continuous variables:
plot(mtcars$disp, mtcars$mpg)

two categorical variables:
mosaicplot(table(mtcars$am, mtcars$cyl))

one continuous, one categorical:
histogram(mtcars$disp[mtcars$cyl==4])
histogram(mtcars$disp[mtcars$cyl==6])
histogram(mtcars$disp[mtcars$cyl==8])

boxplot(mtcars$disp[mtcars$cyl==4])
boxplot(mtcars$disp[mtcars$cyl==6])
boxplot(mtcars$disp[mtcars$cyl==8])

WRANGLING:
subsetting:

mtcars[mtcars$mpg>30,]

making a new variable:
mtcars$efficient[mtcars$mpg>30] <- TRUE
mtcars$efficient[mtcars$mpg<30] <- FALSE

R Syntax Comparison : : CHEAT SHEET

RStudio® is a trademark of RStudio, Inc. • CC BY Amelia McNamara • amcnamara@smith.edu • @AmeliaMN • science.smith.edu/~amcnamara/ • Updated: 2018-01

Dollar sign syntax

tilde

Formula syntax Tidyverse syntax
goal(data$x, data$y) goal(y~x|z, data=data, group=w) data %>% goal(x)

PLOTTING:
one continuous variable:
lattice::histogram(~disp, data=mtcars)

lattice::bwplot(~disp, data=mtcars)

one categorical variable:
mosaic::bargraph(~cyl, data=mtcars)

two continuous variables:
lattice::xyplot(mpg~disp, data=mtcars)

two categorical variables:
mosaic::bargraph(~am, data=mtcars, group=cyl)

one continuous, one categorical:
lattice::histogram(~disp|cyl, data=mtcars)

lattice::bwplot(cyl~disp, data=mtcars)

SUMMARY STATISTICS:
one continuous variable:

mtcars %>% dplyr::summarize(mean(mpg))

one categorical variable:
mtcars %>% dplyr::group_by(cyl) %>%
dplyr::summarize(n())

two categorical variables:
mtcars %>% dplyr::group_by(cyl, am) %>%
dplyr::summarize(n())

one continuous, one categorical:
mtcars %>% dplyr::group_by(cyl) %>%

dplyr::summarize(mean(mpg))

PLOTTING:
one continuous variable:
ggplot2::qplot(x=mpg, data=mtcars, geom = "histogram")

ggplot2::qplot(y=disp, x=1, data=mtcars, geom="boxplot")

one categorical variable:
ggplot2::qplot(x=cyl, data=mtcars, geom="bar")

two continuous variables:
ggplot2::qplot(x=disp, y=mpg, data=mtcars, geom="point")

two categorical variables:
ggplot2::qplot(x=factor(cyl), data=mtcars, geom="bar") +

facet_grid(.~am)

one continuous, one categorical:
ggplot2::qplot(x=disp, data=mtcars, geom = "histogram") +

facet_grid(.~cyl)

ggplot2::qplot(y=disp, x=factor(cyl), data=mtcars,
geom="boxplot")

WRANGLING:
subsetting:
mtcars %>% dplyr::filter(mpg>30)

making a new variable:
mtcars <- mtcars %>%
dplyr::mutate(efficient = if_else(mpg>30, TRUE, FALSE))

the pipe

The variety of R syntaxes give
you many ways to “say” the
same thing

read across the cheatsheet to see how different
syntaxes approach the same problem

Subsetting

From R for Data Science by Hadley Wickham and Garrett Grolemund.

Transform

base
R

Toy data

beatles <- data.frame(
 name = c("John", "Paul", "George", "Ringo"),
 birth = c(1940, 1942, 1943, 1940),
 instrument = c("guitar", "bass", "guitar", "drums")
)

First— the
tidyverse way:

dplyr

dplyr methods for isolating data

 select() - extract variables
 filter() - extract cases
arrange() - reorder cases

select()
Extract columns by name.
select(.data, …)

name(s) of columns to
extract

(or a select helper function)

data frame
to

transform

select()
Extract columns by name.
select(beatles, name, birth)

name birth instrument

John 1940 guitar

Paul 1942 base

George 1943 guitar

Ringo 1940 drums

name birth

John 1940

Paul 1942

George 1943

Ringo 1940

Your Turn
Alter the code to select just the instrument column:

select(beatles, name, birth)

select() helpers
: - Select range of columns

select(storms, storm:pressure)

- - Select every column but

select(storms, -c(storm, pressure))

starts_with() - Select columns that start with…

select(storms, starts_with("w"))

ends_with() - Select columns that end with…

select(storms, ends_with("e"))

select() helpers
contains() - Select columns whose names contain…

select(storms, contains("d"))

matches() - Select columns whose names match regular expression

select(storms, matches("^.{4}$"))

one_of() - Select columns whose names are one of a set
select(storms, one_of(c("storm", "storms", "Storm"))

num_range() - Select columns named in prefix, number style

select(storms, num_range("x", 1:5))

select() helpers

Now, the base R
way: brackets

and dollar signs

Base R bracket subset notation

vec[?]

name of object
to subset

brackets

(brackets always mean

subset)

base
R

 in base R, you use the same syntax to
extract variables
extract cases

Subset notation

vec[2]

name of object
to subset

base
R

Subset notation

vec[?]

name of object
to subset

brackets

(brackets always mean

subset)

an index

(that tells R which

elements to include)

base
R

Each dimension needs its own index!

vec[?] 6 1 3 6 10 5

base
R

Each dimension needs its own index!

vec[?] 6 1 3 6 10 5

base
R

Each dimension needs its own index!

vec[?]
beatles[?,?]

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

base
R

Each dimension needs its own index!

vec[?]

which
rows to
include

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

base
R

beatles[?,?]

Each dimension needs its own index!

vec[?]

which
columns
to include

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

base
R

beatles[?,?]

which
rows to
include

Each dimension needs its own index!

vec[?]

separate
dimensions

with a
comma

which
rows to
include

which
columns
to include

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

base
R

beatles[?,?]

Each dimension needs its own index!

vec[?]
John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

What goes in the indexes?
base

R

beatles[?,?]

Four ways to subset

1. Integers

2. Blank spaces

3. Names

4. Logical vectors (TRUE and FALSE)

Integers (positive)
Positive integers behave just like ij notation in
linear algebra

beatles[?,?]

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

base
R

Integers (positive)

beatles[2,?]

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

Positive integers behave just like ij notation in
linear algebra

base
R

Integers (positive)

beatles[2,3]

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

Positive integers behave just like ij notation in
linear algebra

base
R

Integers (positive)

beatles[2,3]

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

Positive integers behave just like ij notation in
linear algebra

base
R

John

beatles[2]

Paul
Georg

e
Ring

o

1940

1942

1943

1940

bass

drums

guitar

guitar

c("guitar", "bass",
"guitar","drums")

c("John","Paul",
"George","Ringo")

c(1940, 1942,
1943, 1940)

base
R

Num
er

ic
ind

ex
ing

 is
 a

sig
n o

f o
ld

R co
de

, a
nd

 th
er

e a
re

 fe
w go

od
 us

e c
ase

s

W
e w

on
't f

oc
us

 o
n i

t

Names

If your object has names, you can ask for
elements or columns back by name.

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

beatles[,"birth"]

name birth instrument

base
R

Names

If your object has names, you can ask for
elements or columns back by name.

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

beatles[,c("name","birth")]

name birth instrument

base
R

Modify the code below to select just the
instrument column

Your Turn

beatles[,"birth"]

$
The most common syntax for subsetting lists
and data frames

base
R

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

name birth instrument

base
R

beatles$birth  

name of
data frame

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

name birth instrument

base
R

beatles$birth  

$name of
data frame

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

name birth instrument

base
R

beatles$birth  

beatles$birth  

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

name birth instrument

base
R

$name of
data frame

name of column

(no quotes)

$name of
data frame

name of column

(no quotes)

c(1940, 1941, 1943, 1940)

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

name birth instrument

base
R

beatles$birth  

Modify the code below to select just the
instrument column

Your Turn

beatles$birth

Logical
comparisons

Logical comparisons
?Comparison

x < y Less than
x > y Greater than
x == y Equal to
x <= y Less than or equal to
x >= y Greater than or equal to
x != y Not equal to

x %in% y Group membership
is.na(x) Is NA
!is.na(x) Is not NA base

R

What will these return?

1 < 3
1 > 3
c(1, 2, 3, 4, 5) > 3

Logical comparisons

base
R

%in%

What does this do?

1 %in% c(1, 2, 3, 4)
1 %in% c(2, 3, 4)
c(3,4,5,6) %in% c(2, 3, 4)

base
R

%in%
%in% tests whether the object on the left is a member
of the group on the right.

1 %in% c(1, 2, 3, 4)
TRUE
1 %in% c(2, 3, 4)
FALSE
c(3,4,5,6) %in% c(2, 3, 4)
TRUE TRUE FALSE FALSE

base
R

Your turn
x <- c(1, 2, 3, 4, 5)

Operator Result Comparison
x > 3 c(F, F, F, T, T) greater than

x >= 3
x < 3

x <= 3
x == 3
x != 3
x = 3

Your turn
x <- c(1, 2, 3, 4, 5)

Operator Result Comparison
x > 3 c(F, F, F, T, T) greater than

x >= 3 c(F, F, T, T, T) greater than or equal to

x < 3
x <= 3
x == 3
x != 3
x = 3

Your turn
x <- c(1, 2, 3, 4, 5)

Operator Result Comparison
x > 3 c(F, F, F, T, T) greater than

x >= 3 c(F, F, T, T, T) greater than or equal to

x < 3 c(T, T, F, F, F) less than

x <= 3
x == 3
x != 3
x = 3

Your turn
x <- c(1, 2, 3, 4, 5)

Operator Result Comparison
x > 3 c(F, F, F, T, T) greater than

x >= 3 c(F, F, T, T, T) greater than or equal to

x < 3 c(T, T, F, F, F) less than

x <= 3 c(T, T, T, F, F) less than or equal to

x == 3
x != 3
x = 3

Your turn
x <- c(1, 2, 3, 4, 5)

Operator Result Comparison
x > 3 c(F, F, F, T, T) greater than

x >= 3 c(F, F, T, T, T) greater than or equal to

x < 3 c(T, T, F, F, F) less than

x <= 3 c(T, T, T, F, F) less than or equal to

x == 3 c(F, F, T, F, F) equal to

x != 3
x = 3

Your turn
x <- c(1, 2, 3, 4, 5)

Operator Result Comparison
x > 3 c(F, F, F, T, T) greater than

x >= 3 c(F, F, T, T, T) greater than or equal to

x < 3 c(T, T, F, F, F) less than

x <= 3 c(T, T, T, F, F) less than or equal to

x == 3 c(F, F, T, F, F) equal to

x != 3 c(T, T, F, T, T) not equal to

x = 3

Your turn
x <- c(1, 2, 3, 4, 5)

Operator Result Comparison
x > 3 c(F, F, F, T, T) greater than

x >= 3 c(F, F, T, T, T) greater than or equal to

x < 3 c(T, T, F, F, F) less than

x <= 3 c(T, T, T, F, F) less than or equal to

x == 3 c(F, F, T, F, F) equal to

x != 3 c(T, T, F, T, T) not equal to

x = 3 same as <-

Boolean
operators

Boolean operators

a & b and

a | b or

xor(a,b) exactly or

!a not

?base::Logic

base
R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

&
Are both condition 1 and condition 2 true?

expression outcome
TRUE & TRUE TRUE

TRUE & FALSE FALSE

FALSE & TRUE FALSE

FALSE & FALSE FALSE

base
R

|
Is either condition 1 or condition 2 true?

expression outcome
TRUE | TRUE TRUE

TRUE | FALSE TRUE

FALSE | TRUE TRUE

FALSE | FALSE FALSE

base
R

xor
Is either condition 1 or condition 2 true, but not both?

expression outcome
xor(TRUE, TRUE) FALSE

xor(TRUE, FALSE) TRUE

xor(FALSE, TRUE) TRUE

xor(FALSE, FALSE) FALSE

base
R

!
Negation

expression outcome
!(TRUE) FALSE

!(FALSE) TRUE

base
R

Boolean
operators

Boolean operators

a & b and

a | b or

xor(a,b) exactly or

!a not

?base::Logic

base
R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

You can combine logical tests with &, |, xor, !, any, and all

Boolean operators

x > 2 & x < 9

TRUE & TRUE

TRUE
base

R

&
Are both condition 1 and condition 2 true?

expression outcome
TRUE & TRUE TRUE

TRUE & FALSE FALSE

FALSE & TRUE FALSE

FALSE & FALSE FALSE

base
R

|
Is either condition 1 or condition 2 true?

expression outcome
TRUE | TRUE TRUE

TRUE | FALSE TRUE

FALSE | TRUE TRUE

FALSE | FALSE FALSE

base
R

xor
Is either condition 1 or condition 2 true, but not both?

expression outcome
xor(TRUE, TRUE) FALSE

xor(TRUE, FALSE) TRUE

xor(FALSE, TRUE) TRUE

xor(FALSE, FALSE) FALSE

base
R

!
Negation

expression outcome
!(TRUE) FALSE

!(FALSE) TRUE

base
R

filter()
Extract rows that meet every logical criteria.
filter(beatles, birth==1940 & instrument == "guitar")

name birth instrument

John 1940 guitar

Paul 1942 base

George 1943 guitar

Ringo 1940 drums

John 1940 guitar

Your Turn
Modify the code below to filter out the rows for which birth is 1943 or
instrument is drums

filter(beatles, birth==1940 & instrument == "guitar")

Base R

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

You can subset with a logical vector of the same
length as the dimension you are subsetting.
Each element that corresponds to a TRUE will
be returned.

Logical

beatles[c(FALSE,TRUE,TRUE,FALSE),]

base
R

You can subset with a logical vector of the same
length as the dimension you are subsetting.
Each element that corresponds to a TRUE will
be returned.

Logical

beatles[c(FALSE,TRUE,TRUE,FALSE),]

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

c(FALSE,TRUE,TRUE,FALSE)

base
R

John

Paul

George

Ringo

1940

1940

1941

1943

guitar

guitar

drums

bass

You can provide a statement that evaluates to a
logical to get something similar to a dplyr
filter() statement.

Logical

beatles[beatles$birth == 1940,]

base
R

beatles[c(TRUE, FALSE, FALSE, TRUE),]c(TRUE, FALSE, FALSE, TRUE)

Your Turn
Modify the code below to filter out rows where birth is
1943 or instrument is drums

beatles[beatles$birth == 1940,]

More lists

Quiz

What is the difference between an atomic vector and a list?

typeAtomic Vector

"one" "two" "three" characterAtomic Vector

double1 2 3Atomic Vector

logicalTRUE FALSE FALSEAtomic Vector

1 "two" FALSE ?Atomic Vector

character"1" "two" "FALSE"Atomic Vector

typeAtomic Vector

List

character"1" "two" "FALSE"Atomic Vector

List

character"1" "two" "FALSE"Atomic Vector

List double11

logicalFALSE

"two" character

character"1" "two" "FALSE"Atomic Vector

List double11

logicalFALSE

character"1" "two" "FALSE"

character"1" "two" "FALSE"Atomic Vector

List double11

list

character"1" "two" "FALSE"

double

logicalFALSE

character"1" "two" "FALSE"

1

Your Turn 1
Here is a list:
a_list <- list(num = c(8, 9),
 log = TRUE,
 cha = c("a", "b", "c"))

Here are two subsetting commands. Do they return the same
values? Run the code chunks to confirm
a_list["num"]
a_list[["num"]]

a_list["num"]

a_list[["num"]]

[1] 8 9

$num
[1] 8 9

An atomic vector

A list
(with one element named

num that contains an
atomic vector)

lst c("a", "b", "c")c(8, 9) TRUE

num log cha

a_list <- list(num = c(8,9), log = TRUE, cha = c("a", "b", "c"))

c("a", "b", "c")c(8, 9) TRUE

num log cha

a_list["num"]
c(8, 9)

num

c("a", "b", "c")c(8, 9) TRUE

num log cha

a_list["num"]
c(8, 9)

num

a_list[["num"]] c(8, 9)

c("a", "b", "c")c(8, 9) TRUE

num log cha

a_list["num"]
c(8, 9)

num

a_list[["num"]] c(8, 9)

a_list$num c(8, 9)

