
Classes in R

Modified from materials by Mark Hansen, STAT 202a

http://www.stat.ucla.edu/~cocteau/stat202a/index.html

Object oriented programming

Based on the idea of "objects" which can hold data, and "methods,"
which act on those objects

Much like functional programming, object-oriented programming is
a concept more than a strict way languages behave.

Many object-oriented languages like Python and Java are (as
Gentleman describes them) “class-centric”, meaning the classes
define objects and are “repositories for the methods that act on”
them  

R, on the other hand, separates the class information from the
creation of so-called generic functions and (again, quoting
Gentleman) can be thought of as a “function-centric” system  

Object systems in R
S3— the first OOP system in R

S4— second system in R, corresponds with version 4 of S

RC— encapsulated OO

R6— doesn't come with base R, but is maybe a better version of RC

more??

Your Turn

Which object system does Hadley Wickham think is the
most important? Why?

*hint, look at v.2. of Advanced R

S3
Evolved out of a significant effort to introduce modeling functions (lm, glm,
gam, loess) into the language in the early 1990s

There is no formal mechanism for representing instances of a class; they
are, however, typically lists, where named elements of the list represent
“slots”  
 
You can access the class of an S3 object with the function class(); this
can be used to both determine as well as set the class of an object (except
for special cases involving implicit classes, this is the same as creating an
attribute called class with value the string with the class name); finally
is.object() tests to see if an R object has a class attrib

S3
As we have seen, the S3 class and method system is designed
around the concept of a generic function; a generic function has
different behaviors depending on the class of one or more of its
arguments (this is known as polymorphism)  

Generics perform a kind of method “dispatch” that, in turn, selects
the appropriate method to be called; we’ve seen S3 generics
before...  

> print

function (x, ...)

UseMethod("print")

<bytecode: 0x1032250d0>

<environment: namespace:base>

> summary

function (object, ...)

UseMethod("summary")

<bytecode: 0x103338158>

<environment: namespace:base>

Your Turn

Find another three S3 generics.

*hint, look in the Vocabulary section of v.1. of Advanced R

> plot

function (x, y, ...)

UseMethod("plot")

<bytecode: 0x102adb5f8>

<environment: namespace:graphics>

> plot(sqrt)

> plot(1:10)

So, it behaves differently for
different types of objects

How do we find the actual code?

> plot

function (x, y, ...)

UseMethod("plot")

<bytecode: 0x102adb5f8>

<environment: namespace:graphics>

> plot.function
function (x, y = 0, to = 1, from = y, xlim = NULL, ylab = NULL,
 ...)
{
 if (!missing(y) && missing(from))
 from <- y
 if (is.null(xlim)) {
 if (is.null(from))
 from <- 0
 }
 else {
 if (missing(from))
 from <- xlim[1L]
 if (missing(to))
 to <- xlim[2L]
 }

Your Turn

What are some other data types that have plot methods?
How do you know?

The function UseMethod dispatches on the class of the object
returned by class(); methods are simply ordinary functions that
are identified by a special naming convention  

Specifically, methods are given names that are concatenations of
the name of the generic method and the name of the class that they
are intended to apply to, separated by a “.”  

You can list the methods associated with a particular generic with a
call to the function methods()

> methods(class="factor")
 [1] [[[[[<- [<-
 [5] all.equal as.character as.data.frame as.Date
 [9] as.list as.logical as.POSIXlt as.vector
[13] coerce droplevels format initialize
[17] is.na<- length<- levels<- Math
[21] Ops plot print relevel
[25] relist rep show slotsFromS3
[29] summary Summary xtfrm
see '?methods' for accessing help and source code

> methods("plot")
 [1] plot.acf* plot.data.frame* plot.decomposed.ts*
 [4] plot.default plot.dendrogram* plot.density*
 [7] plot.ecdf plot.factor* plot.formula*
[10] plot.function plot.hclust* plot.histogram*
[13] plot.HoltWinters* plot.isoreg* plot.lm*
[16] plot.medpolish* plot.mlm* plot.ppr*
[19] plot.prcomp* plot.princomp* plot.profile.nls*
[22] plot.raster* plot.spec* plot.stepfun
[25] plot.stl* plot.table* plot.ts
[28] plot.tskernel* plot.TukeyHSD*
see '?methods' for accessing help and source code

Non-visible functions are asterisked

Your Turn

What data types does summary() have methods for? How
do you know?

What about print()?

• > methods("print")

• [1] print.acf*

• [2] print.anova*

• [3] print.aov*

• [4] print.aovlist*

• [5] print.ar*

• [6] print.Arima*

• [7] print.arima0*

• [8] print.AsIs

• [9] print.aspell*

• [10] print.aspell_inspect_context*

• [11] print.bibentry*

• [12] print.Bibtex*

• [13] print.browseVignettes*

• [14] print.by

• [15] print.changedFiles*

• [16] print.check_code_usage_in_package*

• [17] print.check_compiled_code*

• [18] print.check_demo_index*

• [19] print.check_depdef*

• [20] print.check_details*

• [21] print.check_details_changes*

• [22] print.check_doi_db*

• [23] print.check_dotInternal*

• [24] print.check_make_vars*

• [25] print.check_nonAPI_calls*

• [26] print.check_package_code_assign_to_globalenv*

• [27] print.check_package_code_attach*

• [28] print.check_package_code_data_into_globalenv*

• [29] print.check_package_code_startup_functions*

• [30] print.check_package_code_syntax*

• [31] print.check_package_code_unload_functions*

• [32] print.check_package_compact_datasets*

• [33] print.check_package_CRAN_incoming*

• [34] print.check_package_datasets*

• [35] print.check_package_depends*

• [36] print.check_package_description*

• [37] print.check_package_description_encoding*

• [38] print.check_package_license*

• [39] print.check_packages_in_dir*

• [40] print.check_packages_used*

• [41] print.check_po_files*

• [42] print.check_pragmas*

• [43] print.check_Rd_contents*

• [44] print.check_Rd_line_widths*

• [45] print.check_Rd_metadata*

• [46] print.check_Rd_xrefs*

• [47] print.check_RegSym_calls*

• [48] print.check_so_symbols*

• [49] print.check_T_and_F*

• [50] print.check_url_db*

• [51] print.check_vignette_index*

• [52] print.checkDocFiles*

• [53] print.checkDocStyle*

• [54] print.checkFF*

• [55] print.checkRd*

• [56] print.checkReplaceFuns*

• [57] print.checkS3methods*

• [58] print.checkTnF*

• [59] print.checkVignettes*

Generics are usually simple functions with just two arguments, one named x
and one “...”; the first argument is typically used to trigger method dispatch
(recall that “...” is the way we pass arguments to a function that don’t have to
be named explicitly but can be used in the body of the function)  

If you don’t include the catch-all “...”, then no method can have a formal
argument that is not also a formal argument of the generic; it’s good practice
to have all methods include the same formal arguments as the generic and for
generics to include the “...” so methods added later can use other arguments  

The downside, of course, is that if you mistype the name of a formal argument
it will be swept up into the “...” without a warning

When the class attribute of an object contains more than one string, R will
run down the list in order, looking for generic.classname for each
entry, picking the first it finds; if it can’t find one it will call the associated
default method (if it exists, otherwise it produces an error)  

For example, the lists on the previous slide all include defaults
(summary.default, residuals.default and AIC.default)  

Notice that as R runs through the class vector, it is really running up the
inheritance tree, checking super-classes for an appropriate method --
Sometimes we want to make explicit use of a method from a super-class;
with S3 we can achieve this kind of action by a call to NextMethod()

Base objects
As we said before, the earliest versions of the S language were developed
prior to widespread adoption of object-oriented programming principles;
as a result, some of the basic classes in R do not make use of the class
attribute and are referred to as implicit classes  

For example, functions are implicitly of class function, while matrices and
arrays are implicitly of classes matrix and array, respectively  

As a result, is.object() will return FALSE when applied to objects having
an implicit class; UseMethod dispatches, however, on even implicit classes
(depending only on the result of a call to class())

> is.object(1:10)

[1] FALSE

> attr(1:10, "class")

NULL

> attr(mtcars, "class")

[1] “data.frame"

Your Turn

What methods exist for the class lm?

Use what you know about methods to

• Create a linear model with at least two predictors

• Plot the residuals of your model against one of the
predictors

