More classes

S4

S4 was the second OOP system introduced to R. It is much more formal than S3, which means it can be harder to use but is also more rigorous

Uses special functions to explicitly define classes (setClass()), generics (setGeneric()), and methods (setMethod()).

One way to identify if an object you are looking at is an S4 object is to look for "slots" (accessed using the @ operator, much like we use \$ in base R)

S4

The group that has most embraced S4 is the <u>Bioconductor</u> community, who have been using almost exclusively S4 since at least 2004.

Bioconductor is analogous to CRAN, and hosts packages related to bioinformatics. Bioinformatics data is much more complicated than the typical "tidy" data we have been thinking about, so it benefits from the added structure of S4.

lubridate

Let's start by looking at a simple example, the Period class in the lubridate package

We can use it to define time periods between dates and times. For example, the time since the Apollo launch

apollo <- days(today()-mdy("07-16-1969"))

Make an object of class Period and examine it in RStudio. What slots does the object have? Which are being used?

ALLMLL package data

Spatial data

How spatial polygons shape our world - Amelia McNamara

Andrew Gelman and Phillip Price.

http://bit.ly/AllMaps

0M

1M

2M

ЗМ

4M

5M

Population

6M

7M

8M

9M

10M

Surprise! Bayesian Weighting for De-Biasing Thematic Maps.

Michael Correll and Jeffrey Heer http://bit.ly/SurpriseMaps

Point data

S3 class

"flat file"

read in with readr::read_csv(), readxl::read_excel() or RStudio Import button

Natural amenities score

https://www.ers.usda.gov/data-products/natural-amenities-scale.aspx

Download the natural amenities data from

https://www.ers.usda.gov/data-products/natural-

amenities-scale.aspx

Upload it to RStudio Cloud

Load it in to R (hint: skip 104 rows)

Put your load-in code into your Rmd

Polygon data

"Shapefiles" (proprietary format from ESRI, but readable by R)

Used to always be represented as an S4 class, including "slots" for data and polygons

Now, packages in the tidyverse have provided representations in S3, but support for modeling isn't complete

Download county shape files from

https://www.census.gov/cgi-bin/geo/shapefiles/index.php

This will be a folder of files

Upload the zipped folder to RStudio Cloud

Loading shapefile data—the oldschool, S4 way

```
library(rgdal)

counties_rgdal <- readOGR("www/static/tl_2018_us_county/",
layer="tl_2018_us_county")

folder name</pre>
```

Load the county data in using rgdal Look into the object. What slots does it have?

> slotNames(counties_rgdal)

[1] "data" "polygons" "plotOrder" "bbox" "proj4string"

> slot(counties_rgdal, "data")

	STATEFP	COUNTYFP	COUNTYNS	GEOID	NAME	NAMELSAD	LSAD	CLASSFP MTFCC
0	31	039	00835841	31039	Cuming	Cuming County	06	H1 G4020
1	53	069	01513275	53069	Wahkiakum	Wahkiakum County	06	H1 G4020
2	35	011	00933054	35011	De Baca	De Baca County	06	H1 G4020
3	31	109	00835876	31109	Lancaster	Lancaster County	06	H1 G4020
4	31	129	00835886	31129	Nuckolls	Nuckolls County	06	H1 G4020

```
> class(counties_rgdal)
[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
> methods(class="SpatialPolygonsDataFrame")
                                                               $
 [1] [
                                  [[<-
                                                                             $<-
                                                [<-
 [7] addAttrToGeom as.data.frame bbox
                                                                             coordinates
                                                coerce
                                                               coerce<-
                                                               dimensions
[13] coordinates<- coordnames
                                  coordnames<-
                                                dim
                                                                             disaggregate
[19] fullgrid
                   geometry
                                                gridded
                                                               is.projected
                                                                             length
                                  geometry<-
[25] merge
                                                                             polygons
                                                               plot
                                                over
                   names
                                  names<-
                   proj4string
                                  proj4string<- rbind</pre>
[31] polygons<-
                                                               recenter
                                                                             row.names
                   spChFIDs
                                  spChFIDs<-
                                                split
                                                                             spplot
     row.names<-
                                                               sppanel
              spTransform
[43] spsample
                                  summary
see '?methods' for accessing help and source code
```

Loading shapefile data—the tidyverse, S3 way

Load the county data in using sf

Look into the object. What does it look like?

Showing 1 to 15 of 3,233 entries

Joining spatial data—the oldschool, S4 way

```
counties_rgdal@data <-
left_join(counties_rgdal@data, natamenf_1_, by =
c("GEOID" = "FIPS Code"))</pre>
```


Generally, you should only use in your methods. If you're working with someone else's class, look for accessor functions that allow you to safely set and get slot values. As the developer of a class, you should also provide your own accessor functions. Accessors are typically S4 generics allowing multiple classes to share the same external interface.

```
attr(,"package")
```

[19] fullgrid

[1] "sp"

> methods(class="SpatialPolygonsDataFrame")

[13] coordinates<- coordnames

[1] [[[<-

[7] addAttrToGeom as.data.frame bbox coerce

[<-

coordnames<- dim

geometry geometry<- gridded

[25] merge names names<- over

[31] polygons<- proj4string proj4string<- rbind

[37] row.names<- spChFIDs spChFIDs<- split

[43] spsample spTransform summary

see '?methods' for accessing help and source code

\$<-

coerce<- coordinates

dimensions disaggregate

is.projected length

plot polygons

recenter row.names

sppanel spplot

Joining spatial data—the tidyverse, S3 way

```
> counties_sf <- counties_sf %>%
left_join(natamenf_1_, by=c("GEOID" = "FIPS Code"))
```

Join the data together, one or both ways

Base plotting of spatial objects

Remember the generic function, plot()? It has methods for both these data types

```
plot(states_rgdal)
plot(states_sf["Yes"])
```

Leaflet

<u>Leaflet</u> is a Javascript library for interactive maps. A bunch of people worked to make an R package that works with leaflet, but you can use leaflet in many more situations (for example, if you do data visualization in d3.js, it's easy to integrate with leaflet).

```
library(leaflet)
pal <- colorNumeric(</pre>
  palette = "Greens",
  domain = counties_rgdal$Yes
m <- leaflet(data=counties_rgdal) %>%
  addProviderTiles("Stamen.Watercolor") %>%
  setView(lng = -98.35, lat = 39.8, zoom = 03) %>%
  addPolygons(stroke = FALSE, fillOpacity = 0.5, smoothFactor = 0.5, color =~pal(Scale)
  ) %>%
  addLegend("bottomright", pal = pal, values = ~Scale,
            title = "Natual ammeniries score",
            opacity = 1
```

Leaflet options

Check out the leaflet options on the RStudio documentation page

- Basemaps: ?addProviderTiles for different base maps
- Colors: colors from RColorBrewer are based on <u>ColorBrewer</u>. You can see all the available palettes by using

library(RColorBrewer)

display.brewer.all(type="seq")

 Legends: check out ?addLegend to see options. In particular, you might want to adjust the bins

Customize your map! Change at least two things (the variable you're plotting, the colors, the bin breaks, the legend text, etc., etc.)

Knit your document!

Hint: DO NOT COMMIT SHAPEFILES

They are large, large files and Github won't accept them

You may want to edit your .gitignore file to ignore them

One way to save yourself is with

```
git rm --cached giant file
```

git commit --amend -CHEAD

RC and R6?

When and why would you want to use RC as your OO system?

General

AmeliaMN 2018-08-16

I've been teaching some of the material from Advanced R this week, and was realizing I can talk about when you might want to use s4 rather than s3, but I have no idea (or good examples) about when you would want to use reference classes. Thoughts?

1 Reply ∨ 7 ♥ Ø ··· ♦ Reply

created | last reply | 5 | 340 | 4 | 10 | 6 | 6 | 2018-09-13 | replies | views | users | likes | links | Views | Views | links | Views | Views

MikeBadescu 2018-08-16

In a presentation about OO I skipped over R original RC (https://numeract.github.io/dallas-roo/#50 3) and I talked only about R6 (which is of the "reference" type).

One package that uses R's original reference classes is openxlsx(https://github.com/awalker89/openxlsx/blob/master/R/class_definitions.R 1). The idea is that you need to keep a pointer to the original object (i.e., the workbook tree) and allow the methods to modify its own data instead of returning a copy of the original object.

R6 does this much better in my opinion. I use R6 for caching in rflow (e.g., https://github.com/numeract/rflow/blob/master/R/eddy-r6.R 10). In this case, an R6Eddy instance stores the caching data for all cached functions; R6 simplifies the manipulation of the structure and allows keeping only one representation of the cache store throughout the R session without the need to sync several such instances.

Aug 2018

1/6 Aug 2018

Sep 2018

RC and R6?

18 DAYS LATER

MikeBadescu

AmeliaMN

Thanks to @MikeBadescu, @alexpghayes, and @davis for these answers! My high-level takeaway is that R6 is useful when you are manipulating very large datasets, to avoid the copy-on-modify that R usually does. Is there more to it than that?

2018-09-13

I would add the case where the object has a "state". One could use the following construct:

```
obj <- list(state = 0, ....) # all RC objects can be seen as lists (simplification
f1 <- function(obj_, ...) {
  main_result = .... # calculation
 obj_$state = 2
  list(res=main_result, obj=obj_) # need to return the the modified obj
lst <- f1(obj, ...) # no side effect but messy</pre>
obj <- lst$obj
                     # doing this many times is not fun
res <- lst$res
```

Aug 2018

5/6 Sep 2018

Sep 2018

An aside: RStudio Community

A great place to ask "dumb" questions that might get negative responses on, for example, Stack Overflow

