
More classes

S4
S4 was the second OOP system introduced to R. It is much more
formal than S3, which means it can be harder to use but is also more
rigorous

Uses special functions to explicitly define classes (setClass()),
generics (setGeneric()), and methods (setMethod()).

One way to identify if an object you are looking at is an S4 object is
to look for "slots" (accessed using the @ operator, much like we use $
in base R)

S4

The group that has most embraced S4 is the Bioconductor
community, who have been using almost exclusively S4 since at
least 2004.

Bioconductor is analogous to CRAN, and hosts packages related to
bioinformatics. Bioinformatics data is much more complicated than
the typical "tidy" data we have been thinking about, so it benefits
from the added structure of S4.

https://www.bioconductor.org/

lubridate

Let's start by looking at a simple example, the Period class in the
lubridate package

We can use it to define time periods between dates and times. For
example, the time since the Apollo launch

apollo <- days(today()-mdy("07-16-1969"))

Your Turn

Make an object of class Period and examine it in RStudio.
What slots does the object have? Which are being used?

ALLMLL package data

Spatial data

https://www.youtube.com/watch?v=wn5larsRHro&t=2s

flickr: mulad

Types of geographic data

Points Lines Polygons

https://www.flickr.com/photos/mulad/10451974746/in/photolist-gYe9Hy-gV1gPJ-7gX9mY-qLgVT1-gVB6X9-qMg81g-fXZ8BT-gVEMCK-gVEFXL-gVrNAm-6fKTb3-8uWh6U-8pcU3g-8o4smf-6RnguM-eCteoi-dhypxr-deu6Bh-damQBk-7k5N8i-65ZKbG-dkLWWb-65WW7o-dkLAqG-666i1W-bYTmGW-d2v2q9

flickr: mulad

Polygons can be regular or irregular

https://www.flickr.com/photos/mulad/10451974746/in/photolist-gYe9Hy-gV1gPJ-7gX9mY-qLgVT1-gVB6X9-qMg81g-fXZ8BT-gVEMCK-gVEFXL-gVrNAm-6fKTb3-8uWh6U-8pcU3g-8o4smf-6RnguM-eCteoi-dhypxr-deu6Bh-damQBk-7k5N8i-65ZKbG-dkLWWb-65WW7o-dkLAqG-666i1W-bYTmGW-d2v2q9

flickr: viriyincy

A choropleth map is one in
which areas (polygons) are

shaded according to some value

https://www.flickr.com/photos/viriyincy/13988403042/in/photolist-nj7dSN-7m2b-5zw5MQ-8UCreo-axnnhd-an24ax-9EfLhX-fAaYES-7rnv-iGuuTo-iGtTGR-iGvtUs-edPtj8-482zRm-hXL359-Ew8CM3-9F6L4C-drZNsk-9kzFYA-nEhkKH-7Wp2Rk-drdZCY-93V7Tf-nNtgXA-yB85qM-dtahrN-zguDMT-zwVDzb-5VZdKf-zvGoTy-5wKw7m-5BfZdA-y621-rRsi4-2DvmA-5zrNhR-jgpED-9FEhvg-8waRV-5zw5L7-oRDEcs-dhgAuh-7Yeuhj-7YewZ3-9EWQ3h-7FMbCj-5zkEBN-5zksaj-5EfFs9-4qyp68

flickr: mulad

All maps of
parameter estimates

are misleading
Andrew Gelman and Phillip Price.

http://bit.ly/AllMaps

https://www.flickr.com/photos/mulad/10451974746/in/photolist-gYe9Hy-gV1gPJ-7gX9mY-qLgVT1-gVB6X9-qMg81g-fXZ8BT-gVEMCK-gVEFXL-gVrNAm-6fKTb3-8uWh6U-8pcU3g-8o4smf-6RnguM-eCteoi-dhypxr-deu6Bh-damQBk-7k5N8i-65ZKbG-dkLWWb-65WW7o-dkLAqG-666i1W-bYTmGW-d2v2q9
http://bit.ly/AllMaps

http://dataremixed.com/2015/01/avoiding-data-pitfalls-part-2/

http://dataremixed.com/2015/01/avoiding-data-pitfalls-part-2/

Michael Correll and Jeffrey Heer
http://bit.ly/SurpriseMaps

Surprise! Bayesian Weighting for De-Biasing Thematic Maps.

http://bit.ly/SurpriseMaps

Point data
S3 class

"flat file"

read in with readr::read_csv(),
readxl::read_excel() or RStudio Import button

Natural amenities score

https://www.ers.usda.gov/data-products/natural-
amenities-scale.aspx

https://www.ers.usda.gov/data-products/natural-amenities-scale.aspx

Your Turn

Download the natural amenities data from

https://www.ers.usda.gov/data-products/natural-
amenities-scale.aspx

Upload it to RStudio Cloud

Load it in to R (hint: skip 104 rows)

Put your load-in code into your Rmd

https://www.ers.usda.gov/data-products/natural-amenities-scale.aspx

Polygon data
"Shapefiles" (proprietary format
from ESRI, but readable by R)

Used to always be represented
as an S4 class, including "slots"
for data and polygons

Now, packages in the tidyverse
have provided representations
in S3, but support for modeling
isn't complete

Your Turn

Download county shape files from

https://www.census.gov/cgi-bin/geo/
shapefiles/index.php

This will be a folder of files

Upload the zipped folder to RStudio
Cloud

https://www.census.gov/cgi-bin/geo/shapefiles/index.php

Loading shapefile data— the oldschool, S4 way

library(rgdal)

counties_rgdal <- readOGR("www/static/tl_2018_us_county/",
layer="tl_2018_us_county")

folder name
file names

Your Turn

Load the county data in using rgdal

Look into the object. What slots does it have?

> slotNames(counties_rgdal)

[1] "data" "polygons" "plotOrder" "bbox" "proj4string"

> slot(counties_rgdal, "data")

 STATEFP COUNTYFP COUNTYNS GEOID NAME NAMELSAD LSAD CLASSFP MTFCC

0 31 039 00835841 31039 Cuming Cuming County 06 H1 G4020

1 53 069 01513275 53069 Wahkiakum Wahkiakum County 06 H1 G4020

2 35 011 00933054 35011 De Baca De Baca County 06 H1 G4020

3 31 109 00835876 31109 Lancaster Lancaster County 06 H1 G4020

4 31 129 00835886 31129 Nuckolls Nuckolls County 06 H1 G4020

> class(counties_rgdal)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

> methods(class="SpatialPolygonsDataFrame")

 [1] [[[[[<- [<- $ $<-

 [7] addAttrToGeom as.data.frame bbox coerce coerce<- coordinates

[13] coordinates<- coordnames coordnames<- dim dimensions disaggregate

[19] fullgrid geometry geometry<- gridded is.projected length

[25] merge names names<- over plot polygons

[31] polygons<- proj4string proj4string<- rbind recenter row.names

[37] row.names<- spChFIDs spChFIDs<- split sppanel spplot

[43] spsample spTransform summary

see '?methods' for accessing help and source code

Loading shapefile data— the tidyverse, S3 way

library(sf)

counties_sf <- st_read("www/static/tl_2018_us_county/")

folder name

Your Turn

Load the county data in using sf

Look into the object. What does it look like?

Joining spatial data— the oldschool, S4 way

counties_rgdal@data <-
left_join(counties_rgdal@data, natamenf_1_, by =
c("GEOID" = "FIPS Code"))

😱

attr(,"package")

[1] "sp"

> methods(class="SpatialPolygonsDataFrame")

 [1] [[[[[<- [<- $ $<-

 [7] addAttrToGeom as.data.frame bbox coerce coerce<- coordinates

[13] coordinates<- coordnames coordnames<- dim dimensions disaggregate

[19] fullgrid geometry geometry<- gridded is.projected length

[25] merge names names<- over plot polygons

[31] polygons<- proj4string proj4string<- rbind recenter row.names

[37] row.names<- spChFIDs spChFIDs<- split sppanel spplot

[43] spsample spTransform summary

see '?methods' for accessing help and source code

¯_()_/¯

Joining spatial data— the tidyverse, S3 way

> counties_sf <- counties_sf %>%
left_join(natamenf_1_, by=c("GEOID" = "FIPS Code"))

Your Turn

Join the data together, one or both ways

Base plotting of spatial objects

Remember the generic function, plot()? It has methods for both
these data types

plot(states_rgdal)

plot(states_sf["Yes"])

Leaflet

Leaflet is a Javascript library for interactive maps. A bunch of
people worked to make an R package that works with leaflet, but
you can use leaflet in many more situations (for example, if you do
data visualization in d3.js, it's easy to integrate with leaflet).

http://leafletjs.com/

library(leaflet)

pal <- colorNumeric(

 palette = "Greens",

 domain = counties_rgdal$Yes

)

m <- leaflet(data=counties_rgdal) %>%

 addProviderTiles("Stamen.Watercolor") %>%

 setView(lng = -98.35, lat = 39.8, zoom = 03) %>%

 addPolygons(stroke = FALSE, fillOpacity = 0.5, smoothFactor = 0.5, color =~pal(Scale)

) %>%

 addLegend("bottomright", pal = pal, values = ~Scale,

 title = "Natual ammeniries score",

 opacity = 1

)

Leaflet options
Check out the leaflet options on the RStudio documentation page

• Basemaps: ?addProviderTiles for different base maps

• Colors: colors from RColorBrewer are based on ColorBrewer. You can see all the available
palettes by using

library(RColorBrewer)

display.brewer.all(type="seq")

• Legends: check out ?addLegend to see options. In particular, you might want to adjust
the bins

https://rstudio.github.io/leaflet/
http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3

Your Turn

Customize your map! Change at least two things (the variable
you're plotting, the colors, the bin breaks, the legend text, etc.,
etc.)

Knit your document!

Hint: DO NOT COMMIT SHAPEFILES

They are large, large files and Github won't accept them

You may want to edit your .gitignore file to ignore them

One way to save yourself is with

git rm --cached giant file

git commit --amend -CHEAD

https://twitter.com/NedghieA/status/1114572376048578560

RC and R6?

https://community.rstudio.com/t/when-and-why-would-you-want-to-use-rc-as-your-oo-system/12694

RC and R6?

https://community.rstudio.com/t/when-and-why-would-you-want-to-use-rc-as-your-oo-system/12694/4

An aside: RStudio Community

A great place to ask "dumb"
questions that might get
negative responses on, for
example, Stack Overflow

