Non-standard evaluation (NSE)
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The R Manuals

edited by the R Development Core Team.

The following manuals for R were created on Debian Linux and may differ from the manuals for Mac or Windows on platform-specific pages, but most parts will be identical for all platforms. The correct version of the
manuals for each platform are part of the respective R installations. The manuals change with R, hence we provide versions for the most recent released R version (R-release), a very current version for the patched
release version (R-patched) and finally a version for the forthcoming R version that is still in development (R-devel).

Here they can be downloaded as PDF files, EPUB files, or directly browsed as HTML.:

Manual R-release R-patched R-devel

An Introduction to R is based on the former "Notes on R", gives an
introduction to the language and how to use R for doing statistical analysis HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
and graphics.

R Data Import/Export describes the import and export facilities available

either in R itself or via packages which are available from CRAN. HIML I EDF | EPUB HIML [ PDF 1 EPUB HIML [ PDF 1 EPUB
R Installation and Administration HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
Writing R Extensions covers how to create your own packages, write R help HTML | PDF | EPUB HTML | PDF | EPUB HTML. | PDF | EPUB

files, and the foreign language (C, C++, Fortran, ...) interfaces.

A draft of The R language definition documents the language per se. That
is, the objects that it works on, and the details of the expression evaluation HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
process, which are useful to know when programming R functions.

R Internals: a guide to the internal structures of R and coding standards for

. : HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
the core team working on R itself.

The R Reference Index: contains all help files of the R standard and
recommended packages in printable form. (9MB, approx. 3500 pages)

Translations of manuals into other languages than English are available from the contributed documentation section (only a few translations are available).
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"There are three kinds of language objects that are available for
modification, calls, expressions, and functions.”

Some useful functions for computing on the language using base R:
+ quote()

- enquote()

- substitute()

- deparse()

- eval()



Call objects

'sometimes referred to as “unevaluated expressions”, although this
terminology Is somewhat confusing” (thanks, R!)

We can get a call object using the function quote() (not to be confused
with a quoted strinQ)

> quote(2+2)

2 + 2

> "2+42" # just a character string
[1] "2+2"



Call objects

f you wanted to then evaluate a quote( )ed call object, you could use
eval()
> eval(quote(2+2))

[1] 4
> eval("2+2") # there's nothing to evaluate here

[1] ||2_|_2||



Remembper, R Is lazy

Sometimes, quote() doesn't give you exactly what you were expecting,
because R Is lazy.

> a <— 1

> b <— 2

> quote(a + b)
a + Db



Remember, R IS lazy

This is where substitute() comesin. substitute() will substitute in the
values it knows about in a particular environment.

> substitute(a + b, env = .GlobalEnv)
a + b
> ?substitute

‘It it 1s an ordinary variable, its value is substituted, unless env is .GlobalEnv
iINn which case the symbol is left unchanged.’



Remember, R IS lazy

Okay... but environments are just lists! So we can make our own.
> substitute(a + b, list(a =1, b = 2))

1 + 2

Of course, everything needs to be defined in that environment

> substitute(a + b, list(a =1, b = x))

Error: object not found
> substitute(a + b, list(a = 1, b = quote(x)))

1 + X

X



Tidyverse NSE

quo () s like quote()
enquo() islike substitute()

| s like eval() 7



Where we're going...

| want you to create a new version of your bootstrap function, which
works in the tidyverse. In other words, instead of calling

bootstrap(mtcars$mpg, samples = 500)
| want to be able to call

mtcars %>% bootstrap(mpg, samples = 500)



