Non-standard evaluation (NSE)

An aside— how we used to learn R

O O R CRAN: Manuals X +

&< > C () & https://cran.r-project.org/manuals.html Y a FIB ® & x [(4

The R Manuals

edited by the R Development Core Team.

The following manuals for R were created on Debian Linux and may differ from the manuals for Mac or Windows on platform-specific pages, but most parts will be identical for all platforms. The correct version of the
manuals for each platform are part of the respective R installations. The manuals change with R, hence we provide versions for the most recent released R version (R-release), a very current version for the patched
release version (R-patched) and finally a version for the forthcoming R version that is still in development (R-devel).

Here they can be downloaded as PDF files, EPUB files, or directly browsed as HTML.:

Manual R-release R-patched R-devel

An Introduction to R is based on the former "Notes on R", gives an
introduction to the language and how to use R for doing statistical analysis HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
and graphics.

R Data Import/Export describes the import and export facilities available

either in R itself or via packages which are available from CRAN. HIML I EDF | EPUB HIML [PDF 1 EPUB HIML [PDF 1 EPUB
R Installation and Administration HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
Writing R Extensions covers how to create your own packages, write R help HTML | PDF | EPUB HTML | PDF | EPUB HTML. | PDF | EPUB

files, and the foreign language (C, C++, Fortran, ...) interfaces.

A draft of The R language definition documents the language per se. That
is, the objects that it works on, and the details of the expression evaluation HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
process, which are useful to know when programming R functions.

R Internals: a guide to the internal structures of R and coding standards for

. : HTML | PDF | EPUB HTML | PDF | EPUB HTML | PDF | EPUB
the core team working on R itself.

The R Reference Index: contains all help files of the R standard and
recommended packages in printable form. (9MB, approx. 3500 pages)

Translations of manuals into other languages than English are available from the contributed documentation section (only a few translations are available).

An aside— how we used to learn R

O & R An Introduction to R X +
— C ()} & https://cran.r-project.org/doc/manuals/r-rele.. @ w a B ® & i [(4]
All lLITIOAQUCT10Il TO KX l

Table of Contents

Preface
1 Introduction and preliminaries
1.1 The R environment
1.2 Related software and documentation
1.3 R and statistics
1.4 R and the window system
1.5 Using R interactively
1.6 An introductory session
1.7 Getting help with functions and features
1.8 R commands, case sensitivity, etc.
1.9 Recall and correction of previous commands N
1.10 Executing commands from or diverting output to a file
1.11 Data permanency and removing objects
2 Simple manipulations; numbers and vectors
2.1 Vectors and assignment
2.2 Vector arithmetic
2.3 Generating regular sequences
2.4 Logical vectors
2.5 Missing values
2.6 Character vectors
2.7 Index vectors; selecting and modifying subsets of a data set
2.8 Other types of objects
3 Objects, their modes and attributes

3.1 Intrinsic attributes: mode and length
3 2 Chaneine the leneth of an obiect

"There are three kinds of language objects that are available for
modification, calls, expressions, and functions.”

Some useful functions for computing on the language using base R:
+ quote()

- enquote()

- substitute()

- deparse()

- eval()

Call objects

'sometimes referred to as “unevaluated expressions”, although this
terminology Is somewhat confusing” (thanks, R!)

We can get a call object using the function quote() (not to be confused
with a quoted strinQ)

> quote(2+2)

2 + 2

> "2+42" # just a character string
[1] "2+2"

Call objects

f you wanted to then evaluate a quote()ed call object, you could use
eval()
> eval(quote(2+2))

[1] 4
> eval("2+2") # there's nothing to evaluate here

[1] ||2_|_2||

Remembper, R Is lazy

Sometimes, quote() doesn't give you exactly what you were expecting,
because R Is lazy.

> a <— 1

> b <— 2

> quote(a + b)
a + Db

Remember, R IS lazy

This is where substitute() comesin. substitute() will substitute in the
values it knows about in a particular environment.

> substitute(a + b, env = .GlobalEnv)
a + b
> ?substitute

‘It it 1s an ordinary variable, its value is substituted, unless env is .GlobalEnv
iINn which case the symbol is left unchanged.’

Remember, R IS lazy

Okay... but environments are just lists! So we can make our own.
> substitute(a + b, list(a =1, b = 2))

1 + 2

Of course, everything needs to be defined in that environment

> substitute(a + b, list(a =1, b = x))

Error: object not found
> substitute(a + b, list(a = 1, b = quote(x)))

1 + X

X

Tidyverse NSE

quo () s like quote()
enquo() islike substitute()

| s like eval() 7

Where we're going...

| want you to create a new version of your bootstrap function, which
works in the tidyverse. In other words, instead of calling

bootstrap(mtcars$mpg, samples = 500)
| want to be able to call

mtcars %>% bootstrap(mpg, samples = 500)

