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Agenda

1. Interpreting nested F-tests

2. Model visualization

3. Polynomial regression

Nested F-tests Interpreting nested F-tests.

> bloodp <- read.csv("http://www.math.smith.edu/~bbaumer/mth247/labs/bloodpress.csv")

> mfull <- lm(BP ~ ., data=bloodp)

> m1 <- lm(BP ~ Weight, data=bloodp)

> m2 <- lm(BP ~ Weight + Age, data=bloodp)

> m3 <- lm(BP ~ Weight + Age + Dur + Stress, data=bloodp)

> # Add the models in ascending order of complexity.

> anova(m1, m2, m3, mfull)

Analysis of Variance Table

Model 1: BP ~ Weight

Model 2: BP ~ Weight + Age

Model 3: BP ~ Weight + Age + Dur + Stress

Model 4: BP ~ Age + Weight + BSA + Dur + Pulse + Stress

Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 54.528

2 17 4.824 1 49.704 299.7198 2.327e-10 ***

3 15 4.545 2 0.279 0.8406 0.453611

4 13 2.156 2 2.389 7.2037 0.007843 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

More model visualization Back to our Italian restaurant data, we have looked at these models
in 3D. One was a simple plane in 3D, and the other was a warped plane, because of the interaction
between two numeric variables.

> mflat <- lm(Price ~ Food + Service, data=NYC)

> mwarp <- lm(Price ~ Food + Service + Food * Service, data=NYC)

We were also talking about models with parallel planes and those with intersecting planes.

> m.parallel <- lm(math~read+write+ses, data=hsb2)

> m.indep <-lm(math~read+write+ses+read*ses+write*ses, data=hsb2)
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These plots have different shapes, depending on the way we choose to include terms in our model.
Including a categorical variable can lead to parallel slopes or parallel planes, and an interaction
between a categorical variable and a quantitative variable allows those lines or planes to have differnt
slopes. Two quantative variables interacting leads to warped planes. But, what if a variable interacts
with itself?

Almost always, we include the constant and linear terms in a model, although we might discover
that they are not needed if other terms are added. The question is generally whether to include the
quadratic and bilinear terms.

> require(mosaic)

> NYC <- read.csv("http://www.math.smith.edu/~bbaumer/mth241/nyc.csv")

> m1 <- lm(Price~Food, data=NYC)

> summary(m1)$adj.r.squared

[1] 0.389528

> mquad <- lm(Price ~ Food + I(Food^2), data=NYC)

> summary(mquad)

Call:

lm(formula = Price ~ Food + I(Food^2), data = NYC)

Residuals:

Min 1Q Median 3Q Max

-21.2196 -4.6185 0.2306 3.9387 27.2306

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.9185 53.1993 1.070 0.286

Food -4.3853 5.1887 -0.845 0.399

I(Food^2) 0.1778 0.1257 1.414 0.159

Residual standard error: 7.239 on 165 degrees of freedom
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Multiple R-squared: 0.4004, Adjusted R-squared: 0.3932

F-statistic: 55.1 on 2 and 165 DF, p-value: < 2.2e-16

> # same result, different code

> # lm(Price ~ poly(Food, 2, raw=TRUE), data=NYC)

> plotModel(mquad)

You don’t want to go too crazy with polynomials, because you can end up overfitting your data.

> # xyplot(y~x, data=d1, type=c("p", "r"), xlab="", ylab="")

> # mcube <- lm(y~poly(x, 3, raw=TRUE), data=d1)

> # plotModel(mcube, xlab="", ylab="")

> # mlots <- lm(y~poly(x, 26, raw=TRUE), data=d1)

> # plotModel(mlots, xlab="", ylab="")

> # summary(mlots)$r.squared


