
Prof. McNamara SDS/MTH 291: Lecture notes November 3, 2016

Agenda

1. Variable selection methods: Best subsets, backward elimination, forward selection, bidirec-
tional

2. Criteria: R2, Cp, AIC, BIC

Variable Selection Recall the problem of finding the “best” model, given a set of potential ex-
planatory variables. How do you know what terms to include in your model? The fundamental
difficulty is that if you have k possible explanatory variables, then there are 2k possible models.
Thus, while it is straightforward to simply check all the models and pick the best one, the number of
models to check grows exponentially with respect to the number of variables, and thus this algorithm
is unfeasible.

We’ll be thinking about the Zagat data, with information about Price of a dinner in Italian
restaurants in New York City, as well as the restaurant’s customer ratings (measured on a scale of
0 to 30) of the Food, Decor, and Service, as well as whether the restaurant is located to the East
or west of 5th Avenue.

> nyc <- read.csv("http://www.math.smith.edu/~bbaumer/mth247/sheather/nyc.csv")

Four related methodologies, under the umbrella of stepwise regression:

• Best subsets: Try all the combinations and find the best model for each fixed number of
explanatory variables

> # install.packages("leaps")

> require(leaps)

> best <- summary(regsubsets(Price ~ Food + Service + Decor + East, data = nyc, nbest = 1))

> with(best, data.frame(rsq, adjr2, cp, rss, bic, outmat))

This code uses the regsubsets() command to find all the best subsets of different sizes. The
parameter nbest=1 tells the function to only show the single best subset of each size (best
model with one predictor, best model with two, etc.).

The second line pulls out some information from the summary of that process, to allow us to
compare between the models of different sizes.

• Backward elimination: Start with the full model and iteratively remove terms that are not
significant

• Forward selection: Start with nothing, and add terms in order of significance

• Stepwise or bidirectional eliminination: Start with forward selection, but prune using backward
elimination

Criteria In order to stepwise algorithms to make sense, we need a criteria for determining which
of two models is “better”. As you might suspect, there is no universally agreed upon criteria for
evaluating models.

• Adjusted R2 We’ve talked about this one quite a bit in class already.

• Mallow’s Cp The book prefers Mallow’s Cp, probably because it can be defined in terms we
have been thinking about. Cp is defined as

Cp =
SSEm

MSEk
+ 2(m + 1) − n

Where m is the number of predictors in the model you are considering and k is the number of
predictors in the full model. The smaller the Cp, the better.

http://en.wikipedia.org/wiki/Stepwise_regression
http://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2
http://en.wikipedia.org/wiki/Mallows%27s_Cp
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• Akaike Information Criteria (AIC) AIC is equivalent to Mallow’s Cp for linear regression, but
is more general. AIC is the default criteria in R, so that’s what we will focus on. AIC is defined
as

AIC = 2k − 2 · ln (L)

where k is the number of explanatory variables, and L is the maximized value of the likelihood
function for the estimated model. We’re not talking explicitly about likelihood in this class,
but it gets bigger the more predictors you add. So, we’re trying to penalize for model size. In
the linear regression case you can think of it like this,

AIC = 2k + n ln (RSS)

The smaller the AIC, the better.

• Bayesian information criterion (BIC) BIC is similar to AIC, but puts a larger penalty on
additional terms in the model. BIC is my favorite criteria. It is defined as

BIC = k · ln (n) − 2 · ln (L)

Again, for the case of linear regression we can substitute in for the likelihood and get this
expression,

BIC = k · ln(n) + n · ln (RSS/n)

Again, smaller values are better.

Caveats:

• Backward Elimination: All terms in result are significant, and few models are constructed.
But can throw out important variables if multicollinearity is an issue

• Forward selection: Consider more models, but can add a predictor early that could be replaced
by other variables

• Word of Caution: automated methods are not substitutes for careful analysis. Are assumptions
met? Are measurements efficient? Is it worth squeezing out a few drops of R2? What about
transformations?

Model selection lab Some code for your convenience.

> require(mosaic)

> require(Stat2Data)

> data(FirstYearGPA)

> head(FirstYearGPA)

> # install.packages("leaps")

> require(leaps)

> # Reports the two best models for each number of predictors

> best <- regsubsets(GPA ~ ., data=FirstYearGPA, nbest=2)

> with(summary(best), data.frame(rsq, adjr2, cp, rss, outmat))

> backward <- regsubsets(GPA ~ ., data=FirstYearGPA, nbest = 1, nvmax = 6, method = "backward")

> summary(backward)

> with(summary(backward), data.frame(cp, outmat))

> forward <- regsubsets(GPA ~ ., data=FirstYearGPA, nbest = 1, nvmax = 6, method = "forward")

> with(summary(forward), data.frame(cp, outmat))

> stepwise <- regsubsets(GPA ~ ., data=FirstYearGPA, nbest = 1, nvmax = 6, method = "seqrep")

> with(summary(stepwise), data.frame(cp, outmat))

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Bayesian_information_criterion

