
Prof. McNamara SDS/MTH 291: Lecture notes November 8, 2016

Agenda

1. Motivation

2. Randomization Tests

3. Bootstrap for Regression

Refresher on distributions There are many theoretical distributions we rely on in statistics,
including

• Normal distribution

• Student’s t-distribution

• F-distribution

require(mosaic)

xpnorm(2)

xpf(6, df1=4, df2=10)

xpt(2, df=4)

All of these distributions approach one another as df ! inf. How do the t- and F-distributions
change as the degrees of freedom increase?

Motivation of randomization and permutation Draw some pictures of what the two methods
look like in general.

Prof. McNamara SDS/MTH 291: Lecture notes November 8, 2016

Randomization (Permutation) Tests Recall that the validity of t-tests, etc. in MLR models
rely on assumptions that may not be met. If these assumptions are not met, we still want to test
for significance! A randomization (or permutation) test is a non-parametric way to approximate the
null distribution of a test statistic. The key idea is to use randomization to scramble any existing
relationships between variables.

For example, we denote the observed correlation coe�cient between X and Y as r
XY

. With real
data r

XY

will never be exactly 0, but how do we know that the true (unknown) correlation between
X and Y , denoted ⇢

XY

is not equal to 0? The classical method assumes normality and uses the
t-statistic

t = r

r
n� 2

1� r

2
, n� 2 d.f.

In a randomization test, our null hypthesis is that ⇢

XY

= 0, and in this case X and Y are not
correlated. So then it wouldn’t matter if we bothered to keep the X column lined up with the cor-
responding entries for the Y column. In fact, we might just as well shu✏e the X’s. The distribution
of observed correlation coe�cients when we do this provides us with an understanding of the null
distribution. If r

XY

is unlikely in that distribution, then we might doubt our hypothesis.

require(Stat2Data)

cor(Price ~ Age, data=ThreeCars)

cor(Price ~ shuffle(Age), data=ThreeCars)

rand.test <- do(5000) * cor(Price ~ shuffle(Age), data=ThreeCars)

densityplot(~cor, data=rand.test)

A similar procedure can be used to test the significance of nearly any sample statistic!

Bootstrap The bootstrap is a versatile computational technique that was discovered in just 1979.
If the assumption of normality of residuals is not met, we can generate a non-parametric sampling
distribution for virtually any statistic by sampling with replacement from the original data. The
distribution of these statistics is called a bootstrap distribution, and is an approximation of the
sampling distribution!

General procedure:

• Take bootstrap sample

• Compute statistic

• Repeat 5000 or more times

• Put original statistic in context of bootstrap distribution

Bootstrapped Confidence Intervals

1. CI based on standard deviation of bootstrapped statistics

• point estimate ±z

⇤
↵/2 · sdbootstrap

• Only makes sense when bootstrap distribution is approximately normal

2. CI based on quantiles of bootstrap distribution

• [q
L

, q

U

]

• Works when bootstrap distribution is approximately symmetric

3. CI based on reversing quantiles of bootstrap distribution

• [x� (q
U

� x), x+ (x� q

L

)]

• Works when bootstrap distribution is skewed

Prof. McNamara SDS/MTH 291: Lecture notes November 8, 2016

Lab code Reproduced here for notetaking

require(mosaic)

require(Stat2Data)

data(FirstYearGPA)

xyplot(GPA ~ SATV, data=FirstYearGPA, pch=19, cex=2, alpha=0.5,

type=c("p","r"), lwd=5)

cor.actual <- cor(GPA ~ SATV, data=FirstYearGPA)

cor.actual

cor.test(FirstYearGPA$GPA, FirstYearGPA$SATV)

xyplot(GPA ~ shuffle(SATV), data=FirstYearGPA, pch=19, cex=2, alpha=0.5,

type=c("p","r"), lwd=5)

Do this 1000 times

rtest <- do(5000) * cor(GPA ~ shuffle(SATV), data=FirstYearGPA)

p1 <- densityplot(~cor, data=rtest, xlim=c(-0.4,0.4), xlab="Correlation Coefficient")

ladd(panel.abline(v=cor.actual, col="red", lwd=3), plot=p1)

pdata(~cor, q=cor.actual, data = rtest)

qdata(~cor, p=c(0.025, 0.975), data = rtest)

data(PorschePrice)

xyplot(Price ~ Mileage, data=PorschePrice, pch=19, cex=2, alpha=0.5,

type=c("p","r"), lwd=5)

xyplot(Price ~ Mileage, data=resample(PorschePrice), pch=19, cex=2, alpha=0.5,

type=c("p","r"), lwd=5)

bslope <- function (formula, data, n) {
Original data

Now do the bootstrap

bootstrap <- do(n) * coef(lm(formula, data=resample(data)))

xyplot(formula, data=data,

panel = function (x, y, ...) {
panel.xyplot(x,y, pch=19, cex=2, alpha=0.5)

fm <- lm(formula, data=data)

panel.abline(fm, col="red", lwd=5)

Add the bootstrap slopes

for (i in 1:n) {
panel.abline(t(bootstrap[i,]), -0.5, col="lightgray", lwd=0.3)

}
panel.text(75, 80,

paste("mean intercept\n",
round(mean(~Intercept, data=bootstrap), 6)), cex=0.75)

panel.text(75, 75,

paste("sd intercept\n",
round(sd(~Intercept, data=bootstrap), 6)), cex=0.75)

panel.text(75, 70,

paste("mean slope\n",
round(mean(~Mileage, data=bootstrap), 6)), cex=0.75)

Prof. McNamara SDS/MTH 291: Lecture notes November 8, 2016

panel.text(75, 65,

paste("sd slope\n",
round(sd(~Mileage, data=bootstrap), 6)), cex=0.75)

}
)

}

bslope(Price ~ Mileage, data=PorschePrice, 100)

install.packages("manipulate")

require(manipulate)

manipulate(

bslope(Price ~ Mileage, data=PorschePrice, n),

n = slider(2, 500, initial=100)

)

fm <- lm(Price ~ Mileage, data=PorschePrice)

confint(fm)

I'm only doing 100 samples, but you should do more!

bootstrap <- do(100) * coef(lm(Price ~ Mileage, data=resample(PorschePrice)))

p2 <- densityplot(~Mileage, data=bootstrap)

ladd(panel.abline(v=coef(fm)["Mileage"], col="red", lwd=3), plot=p2)

zs <- qnorm(c(0.025, 0.975))

coef(fm)["Mileage"] + zs * sd(~Mileage, data=bootstrap)

qdata(~Mileage, p=c(0.025, 0.975), data=bootstrap)

qs <- qdata(~Mileage, p = c(0.025, 0.975), data=bootstrap)$quantile

coef(fm)["Mileage"] - (qs - coef(fm)["Mileage"])

