PrOF. MCNAMARA SDS/MTH 291: LECTURE NOTES NOVEMBER 8, 2016

Agenda

1. Motivation
2. Randomization Tests

3. Bootstrap for Regression

Refresher on distributions There are many theoretical distributions we rely on in statistics,
including

e Normal distribution
e Student’s t-distribution

e F-distribution

require (mosaic)

xpnorm(2)
xpf (6, dfi=4, df2=10)
xpt (2, df=4)

All of these distributions approach one another as df — inf. How do the t- and F-distributions
change as the degrees of freedom increase?

Motivation of randomization and permutation Draw some pictures of what the two methods
look like in general.

PrOF. MCNAMARA SDS/MTH 291: LECTURE NOTES NOVEMBER 8, 2016

Randomization (Permutation) Tests Recall that the validity of ¢-tests, etc. in MLR models
rely on assumptions that may not be met. If these assumptions are not met, we still want to test
for significance! A randomization (or permutation) test is a non-parametric way to approximate the
null distribution of a test statistic. The key idea is to use randomization to scramble any existing
relationships between variables.

For example, we denote the observed correlation coefficient between X and Y as rxy. With real
data rxy will never be exactly 0, but how do we know that the true (unknown) correlation between
X and Y, denoted pxy is not equal to 0?7 The classical method assumes normality and uses the

t-statistic
[n—2
t=r 1_77127 n—2d.f.

In a randomization test, our null hypthesis is that pxy = 0, and in this case X and Y are not
correlated. So then it wouldn’t matter if we bothered to keep the X column lined up with the cor-
responding entries for the Y column. In fact, we might just as well shuffle the X’s. The distribution
of observed correlation coefficients when we do this provides us with an understanding of the null
distribution. If rxy is unlikely in that distribution, then we might doubt our hypothesis.

require(Stat2Data)

cor(Price ~ Age, data=ThreeCars)

cor(Price ~ shuffle(Age), data=ThreeCars)

rand.test <- do(5000) * cor(Price ~ shuffle(Age), data=ThreeCars)
densityplot(~“cor, data=rand.test)

A similar procedure can be used to test the significance of nearly any sample statistic!

Bootstrap The bootstrap is a versatile computational technique that was discovered in just 1979.
If the assumption of normality of residuals is not met, we can generate a non-parametric sampling
distribution for virtually any statistic by sampling with replacement from the original data. The
distribution of these statistics is called a bootstrap distribution, and is an approximation of the
sampling distribution!

General procedure:

e Take bootstrap sample

e Compute statistic

e Repeat 5000 or more times

e Put original statistic in context of bootstrap distribution

Bootstrapped Confidence Intervals
1. CI based on standard deviation of bootstrapped statistics

e point estimate +z7 , - Sdpootstrap

e Only makes sense when bootstrap distribution is approximately normal

2. CI based on quantiles of bootstrap distribution

* (g1, qu]
e Works when bootstrap distribution is approximately symmetric

3. CI based on reversing quantiles of bootstrap distribution

o [r—(qu—2),v+ (z—qr)]

e Works when bootstrap distribution is skewed

PrOF. MCNAMARA SDS/MTH 291: LECTURE NOTES NOVEMBER 8, 2016

Lab code Reproduced here for notetaking

require (mosaic)
require(Stat2Data)
data(FirstYearGPA)

xyplot (GPA ~ SATV, data=FirstYearGPA, pch=19, cex=2, alpha=0.5,
type=c("p","r"), 1Wd=5)

cor.actual <- cor(GPA ~ SATV, data=FirstYearGPA)
cor.actual

cor.test (FirstYearGPA$GPA, FirstYearGPA$SATV)

xyplot (GPA ~ shuffle(SATV), data=FirstYearGPA, pch=19, cex=2, alpha=0.5,
type=c("p","r"), lwd=5)

Do thts 1000 times
rtest <- do(5000) * cor(GPA ~ shuffle(SATV), data=FirstYearGPA)

pl <- demnsityplot(“cor, data=rtest, xlim=c(-0.4,0.4), xlab="Correlation Coefficient")
ladd(panel.abline(v=cor.actual, col="red", lwd=3), plot=pl)

pdata(Tcor, g=cor.actual, data = rtest)
gdata(“cor, p=c(0.025, 0.975), data = rtest)

data(PorschePrice)

xyplot(Price ~ Mileage, data=PorschePrice, pch=19, cex=2, alpha=0.5,
type=c("p","r"), lwd=5)

xyplot(Price ~ Mileage, data=resample(PorschePrice), pch=19, cex=2, alpha=0.5,
type=c("p","r"), 1wd=5)

bslope <- function (formula, data, n) {
Original data
Now do the bootstrap
bootstrap <- do(n) * coef(lm(formula, data=resample(data)))
xyplot(formula, data=data,
panel = function (x, y, ...) {
panel.xyplot(x,y, pch=19, cex=2, alpha=0.5)
fm <- 1lm(formula, data=data)
panel.abline(fm, col="red", lwd=5)
Add the bootstrap slopes
for (i in 1:n) {
panel.abline(t(bootstrap[i,]), -0.5, col="lightgray", lwd=0.3)
}
panel.text (75, 80,
paste("mean intercept\n",
round (mean(~Intercept, data=bootstrap), 6)), cex=0.75)
panel.text (75, 75,
paste("sd intercept\n",
round(sd(~“Intercept, data=bootstrap), 6)), cex=0.75)
panel.text (75, 70,
paste("mean slope\n",
round (mean(~Mileage, data=bootstrap), 6)), cex=0.75)

PrOF. MCNAMARA SDS/MTH 291: LECTURE NOTES NOVEMBER 8, 2016

panel.text (75, 65,
paste("sd slope\n",
round(sd(~Mileage, data=bootstrap), 6)), cex=0.75)

)
1

bslope(Price ~ Mileage, data=PorschePrice, 100)

install.packages("manipulate”)
require(manipulate)
manipulate(
bslope(Price ~ Mileage, data=PorschePrice, n),
n = slider(2, 500, initial=100)

fm <- Im(Price ~ Mileage, data=PorschePrice)
confint (fm)

I'm only doing 100 samples, but you should do more!
bootstrap <- do(100) * coef(lm(Price ~ Mileage, data=resample(PorschePrice)))

p2 <- densityplot(“Mileage, data=bootstrap)
ladd(panel.abline(v=coef (fm) ["Mileage"], col="red", 1lwd=3), plot=p2)

zs <- gnorm(c(0.025, 0.975))
coef (fm) ["Mileage"] + zs * sd("Mileage, data=bootstrap)

qdata(“Mileage, p=c(0.025, 0.975), data=bootstrap)

gs <- gdata(“Mileage, p = c(0.025, 0.975), data=bootstrap)$quantile
coef (fm) ["Mileage"] - (qs - coef(fm) ["Mileage"])

