Amelia McNamara
  • Syllabus
  • Schedule
  • Resources
    • Resources
    • RMarkdown Troubleshooting
    • R and RStudio tips
    • RMarkdown tips
  • Lectures
    • Notes
    • 01 - Introduction
    • 02 - Simple Linear Regression
    • 03 - Conditions for Regression
    • 04 - Transformations
    • 05 - Inference for SLR
    • 06 - Multiple Linear Regression
    • 07 - Interpretation
    • 08 - Second Order Models
    • 09 - Multicollinearity
    • 10 - Exam 1 review
    • 11 - Interaction plots
    • 12 - Nested F tests
    • 13 - Polynomial regression, etc
    • 14 - Model Selection
    • 15 - Randomization & the Bootstrap
    • 16 - Unusual Points
    • 17 - ANOVA
    • 18 - More ANOVA
    • 19 - Logistic Regression
    • 20 - More Logistic Regression
    • 21 - Wrapping up
    • Source
    • 01 - Introduction
    • 02 - Simple Linear Regression
    • 03 - Conditions for Regression
    • 04 - Transformations
    • 05 - Inference for SLR
    • 06 - Multiple Linear Regression
    • 07 - Interpretation
    • 08 - Second Order Models
    • 09 - Multicollinearity
    • 10 - Exam 1 review
    • 11 - Interaction plots
    • 12 - Nested F tests
    • 13 - Polynomial regression, etc
    • 14 - Model Selection
    • 15 - Randomization & the Bootstrap
    • 16 - Unusual Points
    • 17 - ANOVA
    • 18 - More ANOVA
    • 19 - Logistic Regression
    • 20 - More Logistic Regression
    • 21 - Wrapping up
  • Labs
    • Lab
    • Introduction to R and RStudio
    • Residuals
    • Transformations
    • Intervals
    • Regression Summary
    • Multicollinearity
    • Stepwise Regression
    • Randomization & the Bootstrap
    • ANOVA
    • Data Wrangling, part I
    • Multiple Testing
    • Logistic Regression
    • Data Wrangling, part II
    • Source
    • Introduction to R and RStudio
    • Residuals
    • Transformations
    • Intervals
    • Regression Summary
    • Multicollinearity
    • Stepwise Regression
    • Randomization & the Bootstrap
    • ANOVA
    • Data Wrangling, part I
    • Multiple Testing
    • Logistic Regression
    • Data Wrangling, part II
  • Homework
    • Homework
    • Homework 1
    • Homework 2
    • Homework 3
    • Homework 4
    • Homework 5
    • Homework 6
    • Homework 7
    • Homework 8
    • Homework 9
    • Homework 10
    • Homework 11
  • Project, etc
    • Project
    • Instructions
    • Schedule
    • Data appendix Rmd (sample)
    • Data appendix HTML (sample)
    • Sample Projects
    • Peer evaluation sheet
    • Exams
    • Exam correction policy

Resources

  • Moodle
  • Textbook
    • Stat2: Building Models for a World of Data
    • install the Stat2Data package in R
    • Susan Wang’s CFAU companion to the Stat2 book
  • RStudio IDE
    • Choose one of two options:
      1. Log on to the Smith College RStudio Server
      2. Use RStudio locally.
        • Download and install RStudio Desktop
        • Download and install R
    • Learn more about R Markdown
      • printable Reference Guide for R Markdown
    • RStudio’s cheatsheets for:
      • RStudio IDE
      • Data Wrangling with dplyr
      • Shiny
  • Calculators
    • On exams, you may bring a scientific calculator with you to perform calculations. You may not use your phone for this. If you do not have a calculator, the Spinelli Center lends calculators to students. Email spinelli@smith.edu to reserve a calculator.
  • Using R
    • Packages you should install: mosaic, knitr, markdown
    • Quick R
    • R Tutorial
    • Interactive tutorials via swirl
    • Nick Horton’s videos introducing RStudio at Amherst
  • Using R with the mosaic package
    • the mosaic package
    • graphics with mosaic
    • Minimal R for Intro Stats: one page handout with R commands
    • A Compendium of Commands to Teach Statistics with R: a longer illustrated guide to using mosaic
    • Resampling-based inference using the mosaic package
  • Using R with the dplyr package
    • Read the vignettes
    • RStudio’s cheatsheets for:
      • Data Wrangling with dplyr
  • Quantitative Resources on campus
    • Statistics TAs are available Sunday through Thursday from 7-9 pm in Burton 301
    • Data Assistants are available Mondays, Tuesdays, Fridays, and by appointment. They can help you with R and data-related questions.
    • visit the Spinelli Center for Quantitative Learning
    • visit the Spatial Analysis Lab
  • Refresher on introductory statistics: OpenIntro with Randomization
    • PDF of the textbook

By Ben Baumer, modifications by Amelia McNamara.