Amelia McNamara
  • Syllabus
  • Schedule
  • Resources
    • Resources
    • RMarkdown Troubleshooting
    • R and RStudio tips
    • RMarkdown tips
  • Lectures
    • Notes
    • 01 - Introduction
    • 02 - Simple Linear Regression
    • 03 - Conditions for Regression
    • 04 - Transformations
    • 05 - Inference for SLR
    • 06 - Multiple Linear Regression
    • 07 - Interpretation
    • 08 - Second Order Models
    • 09 - Multicollinearity
    • 10 - Exam 1 review
    • 11 - Interaction plots
    • 12 - Nested F tests
    • 13 - Polynomial regression, etc
    • 14 - Model Selection
    • 15 - Randomization & the Bootstrap
    • 16 - Unusual Points
    • 17 - ANOVA
    • 18 - More ANOVA
    • 19 - Logistic Regression
    • 20 - More Logistic Regression
    • 21 - Wrapping up
    • Source
    • 01 - Introduction
    • 02 - Simple Linear Regression
    • 03 - Conditions for Regression
    • 04 - Transformations
    • 05 - Inference for SLR
    • 06 - Multiple Linear Regression
    • 07 - Interpretation
    • 08 - Second Order Models
    • 09 - Multicollinearity
    • 10 - Exam 1 review
    • 11 - Interaction plots
    • 12 - Nested F tests
    • 13 - Polynomial regression, etc
    • 14 - Model Selection
    • 15 - Randomization & the Bootstrap
    • 16 - Unusual Points
    • 17 - ANOVA
    • 18 - More ANOVA
    • 19 - Logistic Regression
    • 20 - More Logistic Regression
    • 21 - Wrapping up
  • Labs
    • Lab
    • Introduction to R and RStudio
    • Residuals
    • Transformations
    • Intervals
    • Regression Summary
    • Multicollinearity
    • Stepwise Regression
    • Randomization & the Bootstrap
    • ANOVA
    • Data Wrangling, part I
    • Multiple Testing
    • Logistic Regression
    • Data Wrangling, part II
    • Source
    • Introduction to R and RStudio
    • Residuals
    • Transformations
    • Intervals
    • Regression Summary
    • Multicollinearity
    • Stepwise Regression
    • Randomization & the Bootstrap
    • ANOVA
    • Data Wrangling, part I
    • Multiple Testing
    • Logistic Regression
    • Data Wrangling, part II
  • Homework
    • Homework
    • Homework 1
    • Homework 2
    • Homework 3
    • Homework 4
    • Homework 5
    • Homework 6
    • Homework 7
    • Homework 8
    • Homework 9
    • Homework 10
    • Homework 11
  • Project, etc
    • Project
    • Instructions
    • Schedule
    • Data appendix Rmd (sample)
    • Data appendix HTML (sample)
    • Sample Projects
    • Peer evaluation sheet
    • Exams
    • Exam correction policy

Schedule

  • Week 1 (9/6):
    • Questionnaire
    • Introduction to the course
    • Why use models?
    • Homework:
      • Read Ch. 0

  • Week 2 (9/11, 9/13):
    • Introduction to R, RStudio, and R Markdown lab
    • Understanding statistical models
    • Four Step process
    • Homework:
      • Read Ch. 1
      • HW #1 due Monday Sept 17 by 11:55 pm, submit on Canvas

  • Week 3 (9/18, 9/20):
    • Residuals lab
    • Assessing Conditions
    • Making Predictions
    • Transformations lab
    • Outliers and Influential Points
    • Homework:
      • Read Ch. 2
      • HW #2 due Monday Sept 24 by 11:55 pm, submit to Canvas

  • Week 4 (9/25, 9/27):
    • Inference for the Slope Coefficient
    • ANOVA
    • Regression and Correlation
    • Intervals and data wrangling lab
    • Homework:
      • Read selection from Modern Data Science with R
      • HW #3 due Monday, October 1 by 11:55 pm, submit to Canvas

  • Week 5 (10/2, 10/4):
    • Multiple Linear Regression
    • Assessing Conditions in MLR
    • Comparing two models
    • Homework:
      • Read Ch. 3.1 - 3.3
      • HW #4 due Monday, October 8 by 11:59 pm, submit to Canvas

  • Week 6 (10/9, 10/11)
    • Interaction terms
    • Multicollinearity
    • Putting it all together
    • Homework:
      • Project groups due by Monday, 10/15
      • Read Ch. 3.4 - 3.8
      • No homework problems, exam Tuesday

  • Week 7 (10/16, 10/18)
    • EXAM 1 Tuesday
    • Interpreting nested F-tests
    • Polynomial regression
    • Stepwise Regression
    • Homework:
      • Read Ch. 4.2 - 4.4 (skipping 4.1)

By Ben Baumer, modifications by Amelia McNamara.